43 research outputs found

    Unbalanced Random Matching Markets with Partial Preferences

    Full text link
    Properties of stable matchings in the popular random-matching-market model have been studied for over 50 years. In a random matching market, each agent has complete preferences drawn uniformly and independently at random. Wilson (1972), Knuth (1976) and Pittel (1989) proved that in balanced random matching markets, the proposers are matched to their lnn\ln nth choice on average. In this paper, we consider markets where agents have partial (truncated) preferences, that is, the proposers only rank their top dd partners. Despite the long history of the problem, the following fundamental question remained unanswered: \emph{what is the smallest value of dd that results in a perfect stable matching with high probability?} In this paper, we answer this question exactly -- we prove that a degree of ln2n\ln^2 n is necessary and sufficient. That is, we show that if d<(1ϵ)ln2nd < (1-\epsilon) \ln^2 n then no stable matching is perfect and if d>(1+ϵ)ln2nd > (1+ \epsilon) \ln^2 n, then every stable matching is perfect with high probability. This settles a recent conjecture by Kanoria, Min and Qian (2021). We generalize this threshold for unbalanced markets: we consider a matching market with nn agents on the shorter side and n(α+1)n(\alpha+1) agents on the longer side. We show that for markets with α=o(1)\alpha =o(1), the sharp threshold characterizing the existence of perfect stable matching occurs when dd is lnnln(1+αα+(1/n(α+1)))\ln n \cdot \ln \left(\frac{1 + \alpha}{\alpha + (1/n(\alpha+1))} \right). Finally, we extend the line of work studying the effect of imbalance on the expected rank of the proposers (termed the ``stark effect of competition''). We establish the regime in unbalanced markets that forces this stark effect to take shape in markets with partial preferences

    A Simply Exponential Upper Bound on the Maximum Number of Stable Matchings

    Full text link
    Stable matching is a classical combinatorial problem that has been the subject of intense theoretical and empirical study since its introduction in 1962 in a seminal paper by Gale and Shapley. In this paper, we provide a new upper bound on f(n)f(n), the maximum number of stable matchings that a stable matching instance with nn men and nn women can have. It has been a long-standing open problem to understand the asymptotic behavior of f(n)f(n) as nn\to\infty, first posed by Donald Knuth in the 1970s. Until now the best lower bound was approximately 2.28n2.28^n, and the best upper bound was 2nlognO(n)2^{n\log n- O(n)}. In this paper, we show that for all nn, f(n)cnf(n) \leq c^n for some universal constant cc. This matches the lower bound up to the base of the exponent. Our proof is based on a reduction to counting the number of downsets of a family of posets that we call "mixing". The latter might be of independent interest

    An Approximate "Law of One Price" in Random Assignment Games

    Full text link
    Assignment games represent a tractable yet versatile model of two-sided markets with transfers. We study the likely properties of the core of randomly generated assignment games. If the joint productivities of every firm and worker are i.i.d bounded random variables, then with high probability all workers are paid roughly equal wages, and all firms make similar profits. This implies that core allocations vary significantly in balanced markets, but that there is core convergence in even slightly unbalanced markets. For the benchmark case of uniform distribution, we provide a tight bound for the workers' share of the surplus under the firm-optimal core allocation. We present simulation results suggesting that the phenomena analyzed appear even in medium-sized markets. Finally, we briefly discuss the effects of unbounded distributions and the ways in which they may affect wage dispersion

    Approximately Stable, School Optimal, and Student-Truthful Many-to-One Matchings (via Differential Privacy)

    Full text link
    We present a mechanism for computing asymptotically stable school optimal matchings, while guaranteeing that it is an asymptotic dominant strategy for every student to report their true preferences to the mechanism. Our main tool in this endeavor is differential privacy: we give an algorithm that coordinates a stable matching using differentially private signals, which lead to our truthfulness guarantee. This is the first setting in which it is known how to achieve nontrivial truthfulness guarantees for students when computing school optimal matchings, assuming worst- case preferences (for schools and students) in large markets

    Stable Secretaries

    Full text link
    We define and study a new variant of the secretary problem. Whereas in the classic setting multiple secretaries compete for a single position, we study the case where the secretaries arrive one at a time and are assigned, in an on-line fashion, to one of multiple positions. Secretaries are ranked according to talent, as in the original formulation, and in addition positions are ranked according to attractiveness. To evaluate an online matching mechanism, we use the notion of blocking pairs from stable matching theory: our goal is to maximize the number of positions (or secretaries) that do not take part in a blocking pair. This is compared with a stable matching in which no blocking pair exists. We consider the case where secretaries arrive randomly, as well as that of an adversarial arrival order, and provide corresponding upper and lower bounds.Comment: Accepted for presentation at the 18th ACM conference on Economics and Computation (EC 2017
    corecore