68 research outputs found

    Short lists with short programs in short time - a short proof

    Full text link
    Bauwens, Mahklin, Vereshchagin and Zimand [ECCC TR13-007] and Teutsch [arxiv:1212.6104] have shown that given a string x it is possible to construct in polynomial time a list containing a short description of it. We simplify their technique and present a shorter proof of this result

    Derandomized Construction of Combinatorial Batch Codes

    Full text link
    Combinatorial Batch Codes (CBCs), replication-based variant of Batch Codes introduced by Ishai et al. in STOC 2004, abstracts the following data distribution problem: nn data items are to be replicated among mm servers in such a way that any kk of the nn data items can be retrieved by reading at most one item from each server with the total amount of storage over mm servers restricted to NN. Given parameters m,c,m, c, and kk, where cc and kk are constants, one of the challenging problems is to construct cc-uniform CBCs (CBCs where each data item is replicated among exactly cc servers) which maximizes the value of nn. In this work, we present explicit construction of cc-uniform CBCs with Ω(mc1+1k)\Omega(m^{c-1+{1 \over k}}) data items. The construction has the property that the servers are almost regular, i.e., number of data items stored in each server is in the range [ncmn2ln(4m),ncm+n2ln(4m)][{nc \over m}-\sqrt{{n\over 2}\ln (4m)}, {nc \over m}+\sqrt{{n \over 2}\ln (4m)}]. The construction is obtained through better analysis and derandomization of the randomized construction presented by Ishai et al. Analysis reveals almost regularity of the servers, an aspect that so far has not been addressed in the literature. The derandomization leads to explicit construction for a wide range of values of cc (for given mm and kk) where no other explicit construction with similar parameters, i.e., with n=Ω(mc1+1k)n = \Omega(m^{c-1+{1 \over k}}), is known. Finally, we discuss possibility of parallel derandomization of the construction

    Short lists for shortest descriptions in short time

    Full text link
    Is it possible to find a shortest description for a binary string? The well-known answer is "no, Kolmogorov complexity is not computable." Faced with this barrier, one might instead seek a short list of candidates which includes a laconic description. Remarkably such approximations exist. This paper presents an efficient algorithm which generates a polynomial-size list containing an optimal description for a given input string. Along the way, we employ expander graphs and randomness dispersers to obtain an Explicit Online Matching Theorem for bipartite graphs and a refinement of Muchnik's Conditional Complexity Theorem. Our main result extends recent work by Bauwens, Mahklin, Vereschchagin, and Zimand

    Derandomization and Group Testing

    Full text link
    The rapid development of derandomization theory, which is a fundamental area in theoretical computer science, has recently led to many surprising applications outside its initial intention. We will review some recent such developments related to combinatorial group testing. In its most basic setting, the aim of group testing is to identify a set of "positive" individuals in a population of items by taking groups of items and asking whether there is a positive in each group. In particular, we will discuss explicit constructions of optimal or nearly-optimal group testing schemes using "randomness-conducting" functions. Among such developments are constructions of error-correcting group testing schemes using randomness extractors and condensers, as well as threshold group testing schemes from lossless condensers.Comment: Invited Paper in Proceedings of 48th Annual Allerton Conference on Communication, Control, and Computing, 201

    Better short-seed quantum-proof extractors

    Get PDF
    We construct a strong extractor against quantum storage that works for every min-entropy kk, has logarithmic seed length, and outputs Ω(k)\Omega(k) bits, provided that the quantum adversary has at most βk\beta k qubits of memory, for any \beta < \half. The construction works by first condensing the source (with minimal entropy-loss) and then applying an extractor that works well against quantum adversaries when the source is close to uniform. We also obtain an improved construction of a strong quantum-proof extractor in the high min-entropy regime. Specifically, we construct an extractor that uses a logarithmic seed length and extracts Ω(n)\Omega(n) bits from any source over \B^n, provided that the min-entropy of the source conditioned on the quantum adversary's state is at least (1β)n(1-\beta) n, for any \beta < \half.Comment: 14 page
    corecore