313 research outputs found

    Path Checking for MTL and TPTL over Data Words

    Full text link
    Metric temporal logic (MTL) and timed propositional temporal logic (TPTL) are quantitative extensions of linear temporal logic, which are prominent and widely used in the verification of real-timed systems. It was recently shown that the path checking problem for MTL, when evaluated over finite timed words, is in the parallel complexity class NC. In this paper, we derive precise complexity results for the path-checking problem for MTL and TPTL when evaluated over infinite data words over the non-negative integers. Such words may be seen as the behaviours of one-counter machines. For this setting, we give a complete analysis of the complexity of the path-checking problem depending on the number of register variables and the encoding of constraint numbers (unary or binary). As the two main results, we prove that the path-checking problem for MTL is P-complete, whereas the path-checking problem for TPTL is PSPACE-complete. The results yield the precise complexity of model checking deterministic one-counter machines against formulae of MTL and TPTL

    The First-Order Theory of Ground Tree Rewrite Graphs

    Full text link
    We prove that the complexity of the uniform first-order theory of ground tree rewrite graphs is in ATIME(2^{2^{poly(n)}},O(n)). Providing a matching lower bound, we show that there is some fixed ground tree rewrite graph whose first-order theory is hard for ATIME(2^{2^{poly(n)}},poly(n)) with respect to logspace reductions. Finally, we prove that there exists a fixed ground tree rewrite graph together with a single unary predicate in form of a regular tree language such that the resulting structure has a non-elementary first-order theory.Comment: accepted for Logical Methods in Computer Scienc

    Processing Succinct Matrices and Vectors

    Full text link
    We study the complexity of algorithmic problems for matrices that are represented by multi-terminal decision diagrams (MTDD). These are a variant of ordered decision diagrams, where the terminal nodes are labeled with arbitrary elements of a semiring (instead of 0 and 1). A simple example shows that the product of two MTDD-represented matrices cannot be represented by an MTDD of polynomial size. To overcome this deficiency, we extended MTDDs to MTDD_+ by allowing componentwise symbolic addition of variables (of the same dimension) in rules. It is shown that accessing an entry, equality checking, matrix multiplication, and other basic matrix operations can be solved in polynomial time for MTDD_+-represented matrices. On the other hand, testing whether the determinant of a MTDD-represented matrix vanishes PSPACE$-complete, and the same problem is NP-complete for MTDD_+-represented diagonal matrices. Computing a specific entry in a product of MTDD-represented matrices is #P-complete.Comment: An extended abstract of this paper will appear in the Proceedings of CSR 201

    Branching-time model checking of one-counter processes

    Full text link
    One-counter processes (OCPs) are pushdown processes which operate only on a unary stack alphabet. We study the computational complexity of model checking computation tree logic (CTL) over OCPs. A PSPACE upper bound is inherited from the modal mu-calculus for this problem. First, we analyze the periodic behaviour of CTL over OCPs and derive a model checking algorithm whose running time is exponential only in the number of control locations and a syntactic notion of the formula that we call leftward until depth. Thus, model checking fixed OCPs against CTL formulas with a fixed leftward until depth is in P. This generalizes a result of the first author, Mayr, and To for the expression complexity of CTL's fragment EF. Second, we prove that already over some fixed OCP, CTL model checking is PSPACE-hard. Third, we show that there already exists a fixed CTL formula for which model checking of OCPs is PSPACE-hard. To obtain the latter result, we employ two results from complexity theory: (i) Converting a natural number in Chinese remainder presentation into binary presentation is in logspace-uniform NC^1 and (ii) PSPACE is AC^0-serializable. We demonstrate that our approach can be used to obtain further results. We show that model-checking CTL's fragment EF over OCPs is hard for P^NP, thus establishing a matching lower bound and answering an open question of the first author, Mayr, and To. We moreover show that the following problem is hard for PSPACE: Given a one-counter Markov decision process, a set of target states with counter value zero each, and an initial state, to decide whether the probability that the initial state will eventually reach one of the target states is arbitrarily close to 1. This improves a previously known lower bound for every level of the Boolean hierarchy by Brazdil et al

    Memoization for Unary Logic Programming: Characterizing PTIME

    Full text link
    We give a characterization of deterministic polynomial time computation based on an algebraic structure called the resolution semiring, whose elements can be understood as logic programs or sets of rewriting rules over first-order terms. More precisely, we study the restriction of this framework to terms (and logic programs, rewriting rules) using only unary symbols. We prove it is complete for polynomial time computation, using an encoding of pushdown automata. We then introduce an algebraic counterpart of the memoization technique in order to show its PTIME soundness. We finally relate our approach and complexity results to complexity of logic programming. As an application of our techniques, we show a PTIME-completeness result for a class of logic programming queries which use only unary function symbols.Comment: Soumis {\`a} LICS 201

    Efficient Parallel Path Checking for Linear-Time Temporal Logic With Past and Bounds

    Full text link
    Path checking, the special case of the model checking problem where the model under consideration is a single path, plays an important role in monitoring, testing, and verification. We prove that for linear-time temporal logic (LTL), path checking can be efficiently parallelized. In addition to the core logic, we consider the extensions of LTL with bounded-future (BLTL) and past-time (LTL+Past) operators. Even though both extensions improve the succinctness of the logic exponentially, path checking remains efficiently parallelizable: Our algorithm for LTL, LTL+Past, and BLTL+Past is in AC^1(logDCFL) \subseteq NC
    • …
    corecore