2,280 research outputs found

    Semantic Image Segmentation via Deep Parsing Network

    Full text link
    This paper addresses semantic image segmentation by incorporating rich information into Markov Random Field (MRF), including high-order relations and mixture of label contexts. Unlike previous works that optimized MRFs using iterative algorithm, we solve MRF by proposing a Convolutional Neural Network (CNN), namely Deep Parsing Network (DPN), which enables deterministic end-to-end computation in a single forward pass. Specifically, DPN extends a contemporary CNN architecture to model unary terms and additional layers are carefully devised to approximate the mean field algorithm (MF) for pairwise terms. It has several appealing properties. First, different from the recent works that combined CNN and MRF, where many iterations of MF were required for each training image during back-propagation, DPN is able to achieve high performance by approximating one iteration of MF. Second, DPN represents various types of pairwise terms, making many existing works as its special cases. Third, DPN makes MF easier to be parallelized and speeded up in Graphical Processing Unit (GPU). DPN is thoroughly evaluated on the PASCAL VOC 2012 dataset, where a single DPN model yields a new state-of-the-art segmentation accuracy.Comment: To appear in International Conference on Computer Vision (ICCV) 201

    Efficient Algorithms for Parsing the DOP Model

    Full text link
    Excellent results have been reported for Data-Oriented Parsing (DOP) of natural language texts (Bod, 1993). Unfortunately, existing algorithms are both computationally intensive and difficult to implement. Previous algorithms are expensive due to two factors: the exponential number of rules that must be generated and the use of a Monte Carlo parsing algorithm. In this paper we solve the first problem by a novel reduction of the DOP model to a small, equivalent probabilistic context-free grammar. We solve the second problem by a novel deterministic parsing strategy that maximizes the expected number of correct constituents, rather than the probability of a correct parse tree. Using the optimizations, experiments yield a 97% crossing brackets rate and 88% zero crossing brackets rate. This differs significantly from the results reported by Bod, and is comparable to results from a duplication of Pereira and Schabes's (1992) experiment on the same data. We show that Bod's results are at least partially due to an extremely fortuitous choice of test data, and partially due to using cleaner data than other researchers.Comment: 10 page

    Principles and Implementation of Deductive Parsing

    Get PDF
    We present a system for generating parsers based directly on the metaphor of parsing as deduction. Parsing algorithms can be represented directly as deduction systems, and a single deduction engine can interpret such deduction systems so as to implement the corresponding parser. The method generalizes easily to parsers for augmented phrase structure formalisms, such as definite-clause grammars and other logic grammar formalisms, and has been used for rapid prototyping of parsing algorithms for a variety of formalisms including variants of tree-adjoining grammars, categorial grammars, and lexicalized context-free grammars.Comment: 69 pages, includes full Prolog cod

    Robust Grammatical Analysis for Spoken Dialogue Systems

    Full text link
    We argue that grammatical analysis is a viable alternative to concept spotting for processing spoken input in a practical spoken dialogue system. We discuss the structure of the grammar, and a model for robust parsing which combines linguistic sources of information and statistical sources of information. We discuss test results suggesting that grammatical processing allows fast and accurate processing of spoken input.Comment: Accepted for JNL
    • …
    corecore