952 research outputs found

    Quasifree processes from nuclei: Meson photoproduction and electron scattering

    Full text link
    We have developed a relativistic formalism for studying quasi-free processes from nuclei. The formalism can be applied with ease to a variety of processes and renders transparent analytical expressions for all observables. We have applied it to kaon photoproduction and to electron scattering. For the case of the kaon, we compute the recoil polarization of the lambda-hyperon and the photon asymmetry. Our results indicate that polarization observables are insensitive to relativistic, nuclear target, and distortion effects. Yet, they are sensitive to the reactive content, making them ideal tools for the study of modifications to the elementary amplitude -- such as in the production, propagation, and decay of nucleon resonances -- in the nuclear medium. For the case of the electron, we have calculated the spectral function of He-4. An observable is identified for the clean and model-independent extraction of the spectral function. Our calculations provide baseline predictions for the recently measured, but not yet fully analyzed, momentum distribution of He-4 by the A1-collaboration from Mainz. Our approach predicts momentum distributions for He-4 that rival some of the best non-relativistic calculations to date.Comment: To appear in the proceedings of International Symposium on Electromagnetic Interactions in Nuclear and Hadron Physics (EMI 2001), Osaka, Ibaraki, Japan, 4-7 Dec 200

    Separating regular languages with two quantifier alternations

    Full text link
    We investigate a famous decision problem in automata theory: separation. Given a class of language C, the separation problem for C takes as input two regular languages and asks whether there exists a third one which belongs to C, includes the first one and is disjoint from the second. Typically, obtaining an algorithm for separation yields a deep understanding of the investigated class C. This explains why a lot of effort has been devoted to finding algorithms for the most prominent classes. Here, we are interested in classes within concatenation hierarchies. Such hierarchies are built using a generic construction process: one starts from an initial class called the basis and builds new levels by applying generic operations. The most famous one, the dot-depth hierarchy of Brzozowski and Cohen, classifies the languages definable in first-order logic. Moreover, it was shown by Thomas that it corresponds to the quantifier alternation hierarchy of first-order logic: each level in the dot-depth corresponds to the languages that can be defined with a prescribed number of quantifier blocks. Finding separation algorithms for all levels in this hierarchy is among the most famous open problems in automata theory. Our main theorem is generic: we show that separation is decidable for the level 3/2 of any concatenation hierarchy whose basis is finite. Furthermore, in the special case of the dot-depth, we push this result to the level 5/2. In logical terms, this solves separation for Σ3\Sigma_3: first-order sentences having at most three quantifier blocks starting with an existential one

    Going higher in the First-order Quantifier Alternation Hierarchy on Words

    Full text link
    We investigate the quantifier alternation hierarchy in first-order logic on finite words. Levels in this hierarchy are defined by counting the number of quantifier alternations in formulas. We prove that one can decide membership of a regular language to the levels BΣ2\mathcal{B}\Sigma_2 (boolean combination of formulas having only 1 alternation) and Σ3\Sigma_3 (formulas having only 2 alternations beginning with an existential block). Our proof works by considering a deeper problem, called separation, which, once solved for lower levels, allows us to solve membership for higher levels

    Languages of Dot-depth One over Infinite Words

    Full text link
    Over finite words, languages of dot-depth one are expressively complete for alternation-free first-order logic. This fragment is also known as the Boolean closure of existential first-order logic. Here, the atomic formulas comprise order, successor, minimum, and maximum predicates. Knast (1983) has shown that it is decidable whether a language has dot-depth one. We extend Knast's result to infinite words. In particular, we describe the class of languages definable in alternation-free first-order logic over infinite words, and we give an effective characterization of this fragment. This characterization has two components. The first component is identical to Knast's algebraic property for finite words and the second component is a topological property, namely being a Boolean combination of Cantor sets. As an intermediate step we consider finite and infinite words simultaneously. We then obtain the results for infinite words as well as for finite words as special cases. In particular, we give a new proof of Knast's Theorem on languages of dot-depth one over finite words.Comment: Presented at LICS 201

    Context-Free Path Querying with Structural Representation of Result

    Full text link
    Graph data model and graph databases are very popular in various areas such as bioinformatics, semantic web, and social networks. One specific problem in the area is a path querying with constraints formulated in terms of formal grammars. The query in this approach is written as grammar, and paths querying is graph parsing with respect to given grammar. There are several solutions to it, but how to provide structural representation of query result which is practical for answer processing and debugging is still an open problem. In this paper we propose a graph parsing technique which allows one to build such representation with respect to given grammar in polynomial time and space for arbitrary context-free grammar and graph. Proposed algorithm is based on generalized LL parsing algorithm, while previous solutions are based mostly on CYK or Earley algorithms, which reduces time complexity in some cases.Comment: Evaluation extende

    A Characterization for Decidable Separability by Piecewise Testable Languages

    Full text link
    The separability problem for word languages of a class C\mathcal{C} by languages of a class S\mathcal{S} asks, for two given languages II and EE from C\mathcal{C}, whether there exists a language SS from S\mathcal{S} that includes II and excludes EE, that is, I⊆SI \subseteq S and S∩E=∅S\cap E = \emptyset. In this work, we assume some mild closure properties for C\mathcal{C} and study for which such classes separability by a piecewise testable language (PTL) is decidable. We characterize these classes in terms of decidability of (two variants of) an unboundedness problem. From this, we deduce that separability by PTL is decidable for a number of language classes, such as the context-free languages and languages of labeled vector addition systems. Furthermore, it follows that separability by PTL is decidable if and only if one can compute for any language of the class its downward closure wrt. the scattered substring ordering (i.e., if the set of scattered substrings of any language of the class is effectively regular). The obtained decidability results contrast some undecidability results. In fact, for all (non-regular) language classes that we present as examples with decidable separability, it is undecidable whether a given language is a PTL itself. Our characterization involves a result of independent interest, which states that for any kind of languages II and EE, non-separability by PTL is equivalent to the existence of common patterns in II and EE
    • …
    corecore