5 research outputs found

    High frame rate contrast enhanced echocardiography: microbubbles stability and contrast evaluation

    Get PDF
    Contrast Echocardiography (CE) with microbubble contrast agents have significantly advanced our capability in assessing cardiac function, including myocardium perfusion imaging and quantification. However in conventional CE techniques with line by line scanning, the frame rate is limited to tens of frames per second and image quality is low. Recent works in high frame-rate (HFR) ultrasound have shown significant improvement of the frame rate. The aim of this work is to investigate the MBs stability and the contrast improvement using HFR CE compared to CE transmission at an echocardiography relevant frequency for different mechanical indices (MIs). Our results show that the contrast and bubble destruction of HFR CE and standard CEUS varies differently as a function of space and MIs. At low MIs, HFR CE shows a similar behavior as focused CE with little MB destruction, and generates better CTR (up to 3 folds). As MI increases, the MB destruction is more significant for HFR CE with a reduction of the CTR

    Effects of motion on high frame rate contrast enhanced echocardiography and its correction

    Get PDF
    Contrast echocardiography (CE) ultrasound with microbubble contrast agents have significantly advanced our capability in assessing cardiac function, including myocardium perfusion imaging and quantification. However in conventional CE techniques with line by line scanning, the frame rate is limited to tens of frames per second and image quality is low. Recent research works in high frame-rate (HFR) ultrasound have shown significant improvement of the frame rate in non-contrast cardiac imaging. But with a higher frame rate, the coherent compounding of HFR CE images shows some artifacts due to the motion of the microbubbles. In this work we demonstrate the impact of this motion on compounded HFR CE in simulation and then apply a motion correction algorithm on in-vivo data acquired from the left ventricle (LV) chamber of a sheep. It shows that even if with the fast flow found inside the LV, the contrast is improved at least 100%

    High-Frame-Rate Contrast Echocardiography using diverging waves: initial in-vitro and in-vivo evaluation

    Get PDF
    Contrast Echocardiography (CE) ultrasound with microbubble contrast agents (UCA) has significantly advanced our capability for assessment of cardiac function, including myocardium perfusion quantification. However in standard CE techniques obtained with line by line scanning, the frame rate and image quality are limited. Recent research has shown significant frame rate improvement in non-contrast cardiac imaging. In this work we present and initially evaluate, both in-vitro and in-vivo, a high frame rate (HFR) CE imaging system using diverging waves and pulse inversion sequence. An imaging frame rate of 5500 frames per second before and 250 frames per second after compounding is achieved. A destruction-replenishment sequence has also been developed. The developed HFR CE is compared with standard CE in-vitro on a phantom and then in-vivo on a sheep heart. The image signal to noise ratio, contrast between the myocardium and the chamber are evaluated. Results show up to 13.4 dB improvement in contrast for HFR CE over standard CE when compared at the same display frame-rate even when the average spatial acoustic pressure in HFR CE is 36% lower than the standard CE. It is also found that when coherent compounding is used the HFR CE image intensity can be significantly modulated by the flow motion in the chamber

    Ultrasound Imaging with Microbubbles [Life Sciences]

    No full text
    corecore