13 research outputs found

    Curve Your Attention: Mixed-Curvature Transformers for Graph Representation Learning

    Full text link
    Real-world graphs naturally exhibit hierarchical or cyclical structures that are unfit for the typical Euclidean space. While there exist graph neural networks that leverage hyperbolic or spherical spaces to learn representations that embed such structures more accurately, these methods are confined under the message-passing paradigm, making the models vulnerable against side-effects such as oversmoothing and oversquashing. More recent work have proposed global attention-based graph Transformers that can easily model long-range interactions, but their extensions towards non-Euclidean geometry are yet unexplored. To bridge this gap, we propose Fully Product-Stereographic Transformer, a generalization of Transformers towards operating entirely on the product of constant curvature spaces. When combined with tokenized graph Transformers, our model can learn the curvature appropriate for the input graph in an end-to-end fashion, without the need of additional tuning on different curvature initializations. We also provide a kernelized approach to non-Euclidean attention, which enables our model to run in time and memory cost linear to the number of nodes and edges while respecting the underlying geometry. Experiments on graph reconstruction and node classification demonstrate the benefits of generalizing Transformers to the non-Euclidean domain.Comment: 19 pages, 7 figure

    Pseudo-Riemannian Graph Convolutional Networks

    Full text link
    Graph convolutional networks (GCNs) are powerful frameworks for learning embeddings of graph-structured data. GCNs are traditionally studied through the lens of Euclidean geometry. Recent works find that non-Euclidean Riemannian manifolds provide specific inductive biases for embedding hierarchical or spherical data. However, they cannot align well with data of mixed graph topologies. We consider a larger class of pseudo-Riemannian manifolds that generalize hyperboloid and sphere. We develop new geodesic tools that allow for extending neural network operations into geodesically disconnected pseudo-Riemannian manifolds. As a consequence, we derive a pseudo-Riemannian GCN that models data in pseudo-Riemannian manifolds of constant nonzero curvature in the context of graph neural networks. Our method provides a geometric inductive bias that is sufficiently flexible to model mixed heterogeneous topologies like hierarchical graphs with cycles. We demonstrate the representational capabilities of this method by applying it to the tasks of graph reconstruction, node classification and link prediction on a series of standard graphs with mixed topologies. Empirical results demonstrate that our method outperforms Riemannian counterparts when embedding graphs of complex topologies.Comment: 20 page

    Capacity Bounds for Hyperbolic Neural Network Representations of Latent Tree Structures

    Full text link
    We study the representation capacity of deep hyperbolic neural networks (HNNs) with a ReLU activation function. We establish the first proof that HNNs can ε\varepsilon-isometrically embed any finite weighted tree into a hyperbolic space of dimension dd at least equal to 22 with prescribed sectional curvature κ1\kappa 1 (where ε=1\varepsilon=1 being optimal). We establish rigorous upper bounds for the network complexity on an HNN implementing the embedding. We find that the network complexity of HNN implementing the graph representation is independent of the representation fidelity/distortion. We contrast this result against our lower bounds on distortion which any ReLU multi-layer perceptron (MLP) must exert when embedding a tree with L>2dL>2^d leaves into a dd-dimensional Euclidean space, which we show at least Ω(L1/d)\Omega(L^{1/d}); independently of the depth, width, and (possibly discontinuous) activation function defining the MLP.Comment: 22 Pages + References, 1 Table, 4 Figure

    \{kappa}HGCN: Tree-likeness Modeling via Continuous and Discrete Curvature Learning

    Full text link
    The prevalence of tree-like structures, encompassing hierarchical structures and power law distributions, exists extensively in real-world applications, including recommendation systems, ecosystems, financial networks, social networks, etc. Recently, the exploitation of hyperbolic space for tree-likeness modeling has garnered considerable attention owing to its exponential growth volume. Compared to the flat Euclidean space, the curved hyperbolic space provides a more amenable and embeddable room, especially for datasets exhibiting implicit tree-like architectures. However, the intricate nature of real-world tree-like data presents a considerable challenge, as it frequently displays a heterogeneous composition of tree-like, flat, and circular regions. The direct embedding of such heterogeneous structures into a homogeneous embedding space (i.e., hyperbolic space) inevitably leads to heavy distortions. To mitigate the aforementioned shortage, this study endeavors to explore the curvature between discrete structure and continuous learning space, aiming at encoding the message conveyed by the network topology in the learning process, thereby improving tree-likeness modeling. To the end, a curvature-aware hyperbolic graph convolutional neural network, \{kappa}HGCN, is proposed, which utilizes the curvature to guide message passing and improve long-range propagation. Extensive experiments on node classification and link prediction tasks verify the superiority of the proposal as it consistently outperforms various competitive models by a large margin.Comment: KDD 202

    Graph embedding and geometric deep learning relevance to network biology and structural chemistry

    Get PDF
    Graphs are used as a model of complex relationships among data in biological science since the advent of systems biology in the early 2000. In particular, graph data analysis and graph data mining play an important role in biology interaction networks, where recent techniques of artificial intelligence, usually employed in other type of networks (e.g., social, citations, and trademark networks) aim to implement various data mining tasks including classification, clustering, recommendation, anomaly detection, and link prediction. The commitment and efforts of artificial intelligence research in network biology are motivated by the fact that machine learning techniques are often prohibitively computational demanding, low parallelizable, and ultimately inapplicable, since biological network of realistic size is a large system, which is characterised by a high density of interactions and often with a non-linear dynamics and a non-Euclidean latent geometry. Currently, graph embedding emerges as the new learning paradigm that shifts the tasks of building complex models for classification, clustering, and link prediction to learning an informative representation of the graph data in a vector space so that many graph mining and learning tasks can be more easily performed by employing efficient non-iterative traditional models (e.g., a linear support vector machine for the classification task). The great potential of graph embedding is the main reason of the flourishing of studies in this area and, in particular, the artificial intelligence learning techniques. In this mini review, we give a comprehensive summary of the main graph embedding algorithms in light of the recent burgeoning interest in geometric deep learning

    Feature generation for long-tail classification

    Get PDF
    The visual world naturally exhibits an imbalance in the number of object or scene instances resulting in a long-tailed distribution. This imbalance poses significant challenges for classification models based on deep learning. Oversampling instances of the tail classes attempts to solve this imbalance. However, the limited visual diversity results in a network with poor representation ability. A simple counter to this is decoupling the representation and classifier networks and using oversampling only to train the classifier. In this paper, instead of repeatedly re-sampling the same image (and thereby features), we explore a direction that attempts to generate meaningful features by estimating the tail category's distribution. Inspired by ideas from recent work on few-shot learning [53], we create calibrated distributions to sample additional features that are subsequently used to train the classifier. Through several experiments on the CIFAR-100-LT (long-tail) dataset with varying imbalance factors and on mini-ImageNet-LT (long-tail), we show the efficacy of our approach and establish a new state-of-the-art. We also present a qualitative analysis of generated features using t-SNE visualizations and analyze the nearest neighbors used to calibrate the tail class distributions. Our code is available at https://github.com/rahulvigneswaran/TailCalibX. © 2021 ACM

    Feature generation for long-tail classification

    Get PDF
    The visual world naturally exhibits an imbalance in the number of object or scene instances resulting in a long-tailed distribution. This imbalance poses significant challenges for classification models based on deep learning. Oversampling instances of the tail classes attempts to solve this imbalance. However, the limited visual diversity results in a network with poor representation ability. A simple counter to this is decoupling the representation and classifier networks and using oversampling only to train the classifier. In this paper, instead of repeatedly re-sampling the same image (and thereby features), we explore a direction that attempts to generate meaningful features by estimating the tail category's distribution. Inspired by ideas from recent work on few-shot learning [53], we create calibrated distributions to sample additional features that are subsequently used to train the classifier. Through several experiments on the CIFAR-100-LT (long-tail) dataset with varying imbalance factors and on mini-ImageNet-LT (long-tail), we show the efficacy of our approach and establish a new state-of-the-art. We also present a qualitative analysis of generated features using t-SNE visualizations and analyze the nearest neighbors used to calibrate the tail class distributions. Our code is available at https://github.com/rahulvigneswaran/TailCalibX. © 2021 ACM

    Normed Spaces for Graph Embedding

    Get PDF
    We would like to extend our thanks to Anna Wienhard, Maria Beatrice Pozetti, Ullrich Koethe, Federico López, and Steve Trettel for many interesting conversations and valuable insights. We extend our sincere gratitude to the reviewers for their insightful comments and suggestions, which have significantly enhanced the quality of this paper. J.M. Riestenberg was supported by the RTG 2229 “Asymptotic Invariants and Limits of Groups and Spaces” and by the DFG under Project-ID 338644254 - SPP2026. Wei Zhao was supported by the Klaus Tschira Foundation and a Young Marsilius Fellowship at Heidelberg UniversityPeer reviewe
    corecore