3 research outputs found

    Dependable Embedded Systems

    Get PDF
    This Open Access book introduces readers to many new techniques for enhancing and optimizing reliability in embedded systems, which have emerged particularly within the last five years. This book introduces the most prominent reliability concerns from today’s points of view and roughly recapitulates the progress in the community so far. Unlike other books that focus on a single abstraction level such circuit level or system level alone, the focus of this book is to deal with the different reliability challenges across different levels starting from the physical level all the way to the system level (cross-layer approaches). The book aims at demonstrating how new hardware/software co-design solution can be proposed to ef-fectively mitigate reliability degradation such as transistor aging, processor variation, temperature effects, soft errors, etc. Provides readers with latest insights into novel, cross-layer methods and models with respect to dependability of embedded systems; Describes cross-layer approaches that can leverage reliability through techniques that are pro-actively designed with respect to techniques at other layers; Explains run-time adaptation and concepts/means of self-organization, in order to achieve error resiliency in complex, future many core systems

    Ultra low power litho friendly local assist circuitry for variability resilient 8T SRAM

    No full text
    This paper presents litho friendly circuit techniques for variability resilient low power 8T SRAM. The new local assist circuitry achieves a state-of-the-art low energy and variability resilient WRITE operation and improves the degraded access speed of SRAM cells at low voltages. Differential VSS bias increases the variability resilience. The physical regularity in the layout of local assist circuitry enables litho optimization thereby reducing the area overhead associated with existing local assist techniques. Statistical simulations in 40nm LP CMOS technology reveals 10x reduction in WRITE energy consumption, 10 3x reduction in write failures, 6.5x improvement in read access time and 31% reduction in the area overhead

    Ultra low power litho friendly local assist circuitry for variability resilient 8T SRAM

    No full text
    \u3cp\u3eThis paper presents litho friendly circuit techniques for variability resilient low power 8T SRAM. The new local assist circuitry achieves a state-of-the-art low energy and variability resilient WRITE operation and improves the degraded access speed of SRAM cells at low voltages. Differential VSS bias increases the variability resilience. The physical regularity in the layout of local assist circuitry enables litho optimization thereby reducing the area overhead associated with existing local assist techniques. Statistical simulations in 40nm LP CMOS technology reveals 10x reduction in WRITE energy consumption, 10 \u3csup\u3e3\u3c/sup\u3ex reduction in write failures, 6.5x improvement in read access time and 31% reduction in the area overhead.\u3c/p\u3
    corecore