4 research outputs found

    Memory and information processing in neuromorphic systems

    Full text link
    A striking difference between brain-inspired neuromorphic processors and current von Neumann processors architectures is the way in which memory and processing is organized. As Information and Communication Technologies continue to address the need for increased computational power through the increase of cores within a digital processor, neuromorphic engineers and scientists can complement this need by building processor architectures where memory is distributed with the processing. In this paper we present a survey of brain-inspired processor architectures that support models of cortical networks and deep neural networks. These architectures range from serial clocked implementations of multi-neuron systems to massively parallel asynchronous ones and from purely digital systems to mixed analog/digital systems which implement more biological-like models of neurons and synapses together with a suite of adaptation and learning mechanisms analogous to the ones found in biological nervous systems. We describe the advantages of the different approaches being pursued and present the challenges that need to be addressed for building artificial neural processing systems that can display the richness of behaviors seen in biological systems.Comment: Submitted to Proceedings of IEEE, review of recently proposed neuromorphic computing platforms and system

    Ultra low leakage synaptic scaling circuits for implementing homeostatic plasticity in neuromorphic architectures

    Full text link
    Homeostatic plasticity is a property of biological neural circuits that stabilizes their neuronal firing rates in face of input changes or environmental variations. Synaptic scaling is a particular homeostatic mechanism that acts at the level of the single neuron over long time scales, by changing the gain of all its afferent synapses to maintain the neuron's mean firing within proper operating bounds. In this paper we present ultra low leakage analog circuits that allow the integration of compact integrated filters in multi-neuron chips, able to achieve time constants of the order of hundreds of seconds, and describe automatic gain control circuits that when interfaced to neuromorphic neuron and synapse circuits implement faithful models of biologically realistic synaptic scaling mechanisms. We present simulation results of the low leakage circuits and describe the control circuits that have been designed for a neuromorphic multi-neuron chip, fabricated using a standard 180nm CMOS process
    corecore