255,984 research outputs found
Quality assessment technique for ubiquitous software and middleware
The new paradigm of computing or information systems is ubiquitous computing systems. The technology-oriented issues of ubiquitous computing systems have made researchers pay much attention to the feasibility study of the technologies rather than building quality assurance indices or guidelines. In this context, measuring quality is the key to developing high-quality ubiquitous computing products. For this reason, various quality models have been defined, adopted and enhanced over the years, for example, the need for one recognised standard quality model (ISO/IEC 9126) is the result of a consensus for a software quality model on three levels: characteristics, sub-characteristics, and metrics. However, it is very much unlikely that this scheme will be directly applicable to ubiquitous computing environments which are considerably different to conventional software, trailing a big concern which is being given to reformulate existing methods, and especially to elaborate new assessment techniques for ubiquitous computing environments. This paper selects appropriate quality characteristics for the ubiquitous computing environment, which can be used as the quality target for both ubiquitous computing product evaluation processes ad development processes. Further, each of the quality characteristics has been expanded with evaluation questions and metrics, in some cases with measures. In addition, this quality model has been applied to the industrial setting of the ubiquitous computing environment. These have revealed that while the approach was sound, there are some parts to be more developed in the future
Ubiquitous emotion-aware computing
Emotions are a crucial element for personal and ubiquitous computing. What to sense and how to sense it, however, remain a challenge. This study explores the rare combination of speech, electrocardiogram, and a revised Self-Assessment Mannequin to assess people’s emotions. 40 people watched 30 International Affective Picture System pictures in either an office or a living-room environment. Additionally, their personality traits neuroticism and extroversion and demographic information (i.e., gender, nationality, and level of education) were recorded. The resulting data were analyzed using both basic emotion categories and the valence--arousal model, which enabled a comparison between both representations. The combination of heart rate variability and three speech measures (i.e., variability of the fundamental frequency of pitch (F0), intensity, and energy) explained 90% (p < .001) of the participants’ experienced valence--arousal, with 88% for valence and 99% for arousal (ps < .001). The six basic emotions could also be discriminated (p < .001), although the explained variance was much lower: 18–20%. Environment (or context), the personality trait neuroticism, and gender proved to be useful when a nuanced assessment of people’s emotions was needed. Taken together, this study provides a significant leap toward robust, generic, and ubiquitous emotion-aware computing
Ubiquitous computing: Anytime, anyplace, anywhere?
Computers are ubiquitous, in terms that they are everywhere, but does this mean the same as ubiquitous computing? Views are divided. The convergent device (one-does-all) view posits the computer as a tool through which anything, and indeed everything, can be done (Licklider & Taylor, 1968). The divergent device (many-do-all) view, by contrast, offers a world where microprocessors are embedded in everything and communicating with one another (Weiser, 1991). This debate is implicitly present in this issue, with examples of the convergent device in Crook & Barrowcliff's paper and in Gay et al's paper, and examples of the divergent devices in Thomas & Gellersen's paper and Baber's paper. I suspect both streams of technology are likely to co-exist
Supporting ethnographic studies of ubiquitous computing in the wild
Ethnography has become a staple feature of IT research over the last twenty years, shaping our understanding of the social character of computing systems and informing their design in a wide variety of settings. The emergence of ubiquitous computing raises new challenges for ethnography however, distributing interaction across a burgeoning array of small, mobile devices and online environments which exploit invisible sensing systems. Understanding interaction requires ethnographers to reconcile interactions that are, for example, distributed across devices on the street with online interactions in order to assemble coherent understandings of the social character and purchase of ubiquitous computing systems. We draw upon four recent studies to show how ethnographers are replaying system recordings of interaction alongside existing resources such as video recordings to do this and identify key challenges that need to be met to support ethnographic study of ubiquitous computing in the wild
Ubiquitous healthcare profile management applying smart card technology
Nowadays, the patient-centric healthcare approach is focused on ubiquitous healthcare services. Furthermore, the adoption of cloud computing technology leads to more efficient ubiquitous healthcare systems. Moreover, the personalization of the delivery of ubiquitous healthcare services is enabled with the introduction of user profiles. In this paper, we propose five generic healthcare profile structures corresponding to the main categories of the participating entities included in a typical ubiquitous healthcare system in a cloud computing environment. In addition, we propose a profile management system incorporating smart card technology to increase its efficiency and the quality of the provided services of the ubiquitous healthcare system
Recommending Location Privacy Preferences in Ubiquitous Computing
Location-Based Services have become increasingly popular due to the prevalence of smart devices. The protection of users’ location privacy in such systems is a vital issue. Conventional privacy protection methods such as manually predefining privacy rules or asking users to make decisions every time they enter a new location may not be usable, and so researchers have explored the use of machine learning to predict preferences. Model-based machine learning classifiers which are used for prediction may be too computationally complex to be used in real-world applications. We propose a location-privacy recommender that can provide users with recommendations of appropriate location privacy settings through user-user collaborative filtering. We test our scheme on real world dataset and the experiment results show that the performance of our scheme is close to the best performance of model-based classifiers and it outperforms model-based classifiers when there are no sufficient training data.Peer reviewe
- …
