5 research outputs found

    Fearless Steps Challenge Phase-1 Evaluation Plan

    Full text link
    The Fearless Steps Challenge 2019 Phase-1 (FSC-P1) is the inaugural Challenge of the Fearless Steps Initiative hosted by the Center for Robust Speech Systems (CRSS) at the University of Texas at Dallas. The goal of this Challenge is to evaluate the performance of state-of-the-art speech and language systems for large task-oriented teams with naturalistic audio in challenging environments. Researchers may select to participate in any single or multiple of these challenge tasks. Researchers may also choose to employ the FEARLESS STEPS corpus for other related speech applications. All participants are encouraged to submit their solutions and results for consideration in the ISCA INTERSPEECH-2019 special session.Comment: Document Generated in February 2019 for conducting the Fearless Steps Challenge Phase-1 and its associated ISCA Interspeech-2019 Special Sessio

    FEARLESS STEPS Challenge (FS-2): Supervised Learning with Massive Naturalistic Apollo Data

    Full text link
    The Fearless Steps Initiative by UTDallas-CRSS led to the digitization, recovery, and diarization of 19,000 hours of original analog audio data, as well as the development of algorithms to extract meaningful information from this multi-channel naturalistic data resource. The 2020 FEARLESS STEPS (FS-2) Challenge is the second annual challenge held for the Speech and Language Technology community to motivate supervised learning algorithm development for multi-party and multi-stream naturalistic audio. In this paper, we present an overview of the challenge sub-tasks, data, performance metrics, and lessons learned from Phase-2 of the Fearless Steps Challenge (FS-2). We present advancements made in FS-2 through extensive community outreach and feedback. We describe innovations in the challenge corpus development, and present revised baseline results. We finally discuss the challenge outcome and general trends in system development across both phases (Phase FS-1 Unsupervised, and Phase FS-2 Supervised) of the challenge, and its continuation into multi-channel challenge tasks for the upcoming Fearless Steps Challenge Phase-3.Comment: Paper Accepted in the Interspeech 2020 Conferenc

    On the Robustness of Arabic Speech Dialect Identification

    Full text link
    Arabic dialect identification (ADI) tools are an important part of the large-scale data collection pipelines necessary for training speech recognition models. As these pipelines require application of ADI tools to potentially out-of-domain data, we aim to investigate how vulnerable the tools may be to this domain shift. With self-supervised learning (SSL) models as a starting point, we evaluate transfer learning and direct classification from SSL features. We undertake our evaluation under rich conditions, with a goal to develop ADI systems from pretrained models and ultimately evaluate performance on newly collected data. In order to understand what factors contribute to model decisions, we carry out a careful human study of a subset of our data. Our analysis confirms that domain shift is a major challenge for ADI models. We also find that while self-training does alleviate this challenges, it may be insufficient for realistic conditions

    A survey on artificial intelligence-based acoustic source identification

    Get PDF
    The concept of Acoustic Source Identification (ASI), which refers to the process of identifying noise sources has attracted increasing attention in recent years. The ASI technology can be used for surveillance, monitoring, and maintenance applications in a wide range of sectors, such as defence, manufacturing, healthcare, and agriculture. Acoustic signature analysis and pattern recognition remain the core technologies for noise source identification. Manual identification of acoustic signatures, however, has become increasingly challenging as dataset sizes grow. As a result, the use of Artificial Intelligence (AI) techniques for identifying noise sources has become increasingly relevant and useful. In this paper, we provide a comprehensive review of AI-based acoustic source identification techniques. We analyze the strengths and weaknesses of AI-based ASI processes and associated methods proposed by researchers in the literature. Additionally, we did a detailed survey of ASI applications in machinery, underwater applications, environment/event source recognition, healthcare, and other fields. We also highlight relevant research directions
    corecore