2 research outputs found

    Fundamental Rate Limits of UAV-Enabled Multiple Access Channel with Trajectory Optimization

    Full text link
    This paper studies an unmanned aerial vehicle (UAV)-enabled multiple access channel (MAC), in which multiple ground users transmit individual messages to a mobile UAV in the sky. We consider a linear topology scenario, where these users locate in a straight line and the UAV flies at a fixed altitude above the line connecting them. Under this setup, we jointly optimize the one-dimensional (1D) UAV trajectory and wireless resource allocation to reveal the fundamental rate limits of the UAV-enabled MAC, under the users' individual maximum power constraints and the UAV's maximum flight speed constraints. First, we consider the capacity-achieving non-orthogonal multiple access (NOMA) transmission with successive interference cancellation (SIC) at the UAV receiver. In this case, we characterize the capacity region by maximizing the average sum-rate of users subject to rate profile constraints. To optimally solve this highly non-convex problem, we transform the original speed-constrained trajectory optimization problem into a speed-free problem that is optimally solvable via the Lagrange dual decomposition. It is rigorously proved that the optimal 1D trajectory solution follows the successive hover-and-fly (SHF) structure. Next, we consider two orthogonal multiple access (OMA) transmission schemes, i.e., frequency-division multiple access (FDMA) and time-division multiple access (TDMA). We maximize the achievable rate regions in the two cases by jointly optimizing the 1D trajectory design and wireless resource (frequency/time) allocation. It is shown that the optimal trajectory solutions still follow the SHF structure but with different hovering locations. Finally, numerical results show that the proposed optimal trajectory designs achieve considerable rate gains over other benchmark schemes, and the capacity region achieved by NOMA significantly outperforms the rate regions by FDMA and TDMA.Comment: To appear in IEEE Transactions on Wireless Communication

    Secrecy Transmission in Large-Scale UAV-Enabled Wireless Networks

    Full text link
    This paper considers the secrecy transmission in a large-scale unmanned aerial vehicle (UAV)-enabled wireless network, in which a set of UAVs in the sky transmit confidential information to their respective legitimate receivers on the ground, in the presence of another set of randomly distributed suspicious ground eavesdroppers. We assume that the horizontal locations of legitimate receivers and eavesdroppers are distributed as two independent homogeneous Possion point processes (PPPs), and each of the UAVs is positioned exactly above its corresponding legitimate receiver for efficient secrecy communication. Furthermore, we consider an elevation-angle-dependent line-of-sight (LoS)/non-LoS (NLoS) path-loss model for air-to-ground (A2G) wireless channels and employ the wiretap code for secrecy transmission. Under such setups, we first characterize the secrecy communication performance (in terms of the connection probability, secrecy outage probability, and secrecy transmission capacity) in mathematically tractable forms, and accordingly optimize the system configurations (i.e., the wiretap code rates and UAV positioning altitude) to maximize the secrecy transmission capacity, subject to a maximum secrecy outage probability constraint. Next, we propose to use the secrecy guard zone technique for further secrecy protection, and analyze the correspondingly achieved secrecy communication performance. Finally, we present numerical results to validate the theoretical analysis. It is shown that the employment of secrecy guard zone significantly improves the secrecy transmission capacity of this network, and the desirable guard zone radius generally decreases monotonically as the UAVs' and/or the eavesdroppers' densities increase.Comment: 16 pages, 11 figures. Accepted for publication in the IEEE Transactions on Communications. It overlaps with the former version (arXiv:1902.00836
    corecore