3,436 research outputs found

    The Development Of A Robust Algorithm For Uav Path Planning In 3d Environment

    Get PDF
    Significant research has been conducted on Unmanned Aerial Vehicle (UAV) path planning using evolutionary algorithms, such as Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Differential Evolution (DE), and Biogeographic-Based Optimization (BBO). However, the performance of most of these algorithms tend to decline in terms of function and computational cost when dealing with robust systems. Thus, a new algorithm known as infection evolution (IE) was developed in this study. IE simplifies calculation and maximizes the efficiency of generating an improved path plan in a 3D environment. Nine terrain maps were used as case studies, and 100 simulations were carried out for each case to determine the average performance of the proposed algorithm. All simulations were performed using MATLAB with visualization of UAV path planning. The performance of the IE algorithm was compared with that of PSO, GA, DE, and BBO at their respective optimized settings. IE attained a 92% probability rate of achieving a short path length in 100 case studies. With regard to computational cost, IE attained a 97% probability rate of achieving a faster processing speed in comparison with tested algorithms. Therefore, the IE algorithm exhibits significant potential for UAV path planning optimizatio

    Online Informative Path Planning for Active Classification on UAVs

    Full text link
    We propose an informative path planning (IPP) algorithm for active classification using an unmanned aerial vehicle (UAV), focusing on weed detection in precision agriculture. We model the presence of weeds on farmland using an occupancy grid and generate plans according to information-theoretic objectives, enabling the UAV to gather data efficiently. We use a combination of global viewpoint selection and evolutionary optimization to refine the UAV's trajectory in continuous space while satisfying dynamic constraints. We validate our approach in simulation by comparing against standard "lawnmower" coverage, and study the effects of varying objectives and optimization strategies. We plan to evaluate our algorithm on a real platform in the immediate future.Comment: 7 pages, 4 figures, submission to International Symposium on Experimental Robotics 201

    Obstacle-aware Adaptive Informative Path Planning for UAV-based Target Search

    Full text link
    Target search with unmanned aerial vehicles (UAVs) is relevant problem to many scenarios, e.g., search and rescue (SaR). However, a key challenge is planning paths for maximal search efficiency given flight time constraints. To address this, we propose the Obstacle-aware Adaptive Informative Path Planning (OA-IPP) algorithm for target search in cluttered environments using UAVs. Our approach leverages a layered planning strategy using a Gaussian Process (GP)-based model of target occupancy to generate informative paths in continuous 3D space. Within this framework, we introduce an adaptive replanning scheme which allows us to trade off between information gain, field coverage, sensor performance, and collision avoidance for efficient target detection. Extensive simulations show that our OA-IPP method performs better than state-of-the-art planners, and we demonstrate its application in a realistic urban SaR scenario.Comment: Paper accepted for International Conference on Robotics and Automation (ICRA-2019) to be held at Montreal, Canad

    An Innovative Mission Management System for Fixed-Wing UAVs

    Get PDF
    This paper presents two innovative units linked together to build the main frame of a UAV Mis- sion Management System. The first unit is a Path Planner for small UAVs able to generate optimal paths in a tridimensional environment, generat- ing flyable and safe paths with the lowest com- putational effort. The second unit is the Flight Management System based on Nonlinear Model Predictive Control, that tracks the reference path and exploits a spherical camera model to avoid unpredicted obstacles along the path. The control system solves on-line (i.e. at each sampling time) a finite horizon (state horizon) open loop optimal control problem with a Genetic Algorithm. This algorithm finds the command sequence that min- imizes the tracking error with respect to the ref- erence path, driving the aircraft far from sensed obstacles and towards the desired trajectory
    corecore