2,166 research outputs found

    The power of linear programming for general-valued CSPs

    Full text link
    Let DD, called the domain, be a fixed finite set and let Γ\Gamma, called the valued constraint language, be a fixed set of functions of the form f:Dm→Q∪{∞}f:D^m\to\mathbb{Q}\cup\{\infty\}, where different functions might have different arity mm. We study the valued constraint satisfaction problem parametrised by Γ\Gamma, denoted by VCSP(Γ)(\Gamma). These are minimisation problems given by nn variables and the objective function given by a sum of functions from Γ\Gamma, each depending on a subset of the nn variables. Finite-valued constraint languages contain functions that take on only rational values and not infinite values. Our main result is a precise algebraic characterisation of valued constraint languages whose instances can be solved exactly by the basic linear programming relaxation (BLP). For a valued constraint language Γ\Gamma, BLP is a decision procedure for Γ\Gamma if and only if Γ\Gamma admits a symmetric fractional polymorphism of every arity. For a finite-valued constraint language Γ\Gamma, BLP is a decision procedure if and only if Γ\Gamma admits a symmetric fractional polymorphism of some arity, or equivalently, if Γ\Gamma admits a symmetric fractional polymorphism of arity 2. Using these results, we obtain tractability of several novel classes of problems, including problems over valued constraint languages that are: (1) submodular on arbitrary lattices; (2) kk-submodular on arbitrary finite domains; (3) weakly (and hence strongly) tree-submodular on arbitrary trees.Comment: A full version of a FOCS'12 paper by the last two authors (arXiv:1204.1079) and an ICALP'13 paper by the first author (arXiv:1207.7213) to appear in SIAM Journal on Computing (SICOMP

    A categorical semantics for causal structure

    Get PDF
    We present a categorical construction for modelling causal structures within a general class of process theories that include the theory of classical probabilistic processes as well as quantum theory. Unlike prior constructions within categorical quantum mechanics, the objects of this theory encode fine-grained causal relationships between subsystems and give a new method for expressing and deriving consequences for a broad class of causal structures. We show that this framework enables one to define families of processes which are consistent with arbitrary acyclic causal orderings. In particular, one can define one-way signalling (a.k.a. semi-causal) processes, non-signalling processes, and quantum nn-combs. Furthermore, our framework is general enough to accommodate recently-proposed generalisations of classical and quantum theory where processes only need to have a fixed causal ordering locally, but globally allow indefinite causal ordering. To illustrate this point, we show that certain processes of this kind, such as the quantum switch, the process matrices of Oreshkov, Costa, and Brukner, and a classical three-party example due to Baumeler, Feix, and Wolf are all instances of a certain family of processes we refer to as SOCn\textrm{SOC}_n in the appropriate category of higher-order causal processes. After defining these families of causal structures within our framework, we give derivations of their operational behaviour using simple, diagrammatic axioms.Comment: Extended version of a LICS 2017 paper with the same titl

    Ultimate periodicity of b-recognisable sets : a quasilinear procedure

    Full text link
    It is decidable if a set of numbers, whose representation in a base b is a regular language, is ultimately periodic. This was established by Honkala in 1986. We give here a structural description of minimal automata that accept an ultimately periodic set of numbers. We then show that it can verified in linear time if a given minimal automaton meets this description. This thus yields a O(n log(n)) procedure for deciding whether a general deterministic automaton accepts an ultimately periodic set of numbers.Comment: presented at DLT 201

    Credal Networks under Epistemic Irrelevance

    Get PDF
    A credal network under epistemic irrelevance is a generalised type of Bayesian network that relaxes its two main building blocks. On the one hand, the local probabilities are allowed to be partially specified. On the other hand, the assessments of independence do not have to hold exactly. Conceptually, these two features turn credal networks under epistemic irrelevance into a powerful alternative to Bayesian networks, offering a more flexible approach to graph-based multivariate uncertainty modelling. However, in practice, they have long been perceived as very hard to work with, both theoretically and computationally. The aim of this paper is to demonstrate that this perception is no longer justified. We provide a general introduction to credal networks under epistemic irrelevance, give an overview of the state of the art, and present several new theoretical results. Most importantly, we explain how these results can be combined to allow for the design of recursive inference methods. We provide numerous concrete examples of how this can be achieved, and use these to demonstrate that computing with credal networks under epistemic irrelevance is most definitely feasible, and in some cases even highly efficient. We also discuss several philosophical aspects, including the lack of symmetry, how to deal with probability zero, the interpretation of lower expectations, the axiomatic status of graphoid properties, and the difference between updating and conditioning

    Multi-path Summation for Decoding 2D Topological Codes

    Get PDF
    Fault tolerance is a prerequisite for scalable quantum computing. Architectures based on 2D topological codes are effective for near-term implementations of fault tolerance. To obtain high performance with these architectures, we require a decoder which can adapt to the wide variety of error models present in experiments. The typical approach to the problem of decoding the surface code is to reduce it to minimum-weight perfect matching in a way that provides a suboptimal threshold error rate, and is specialized to correct a specific error model. Recently, optimal threshold error rates for a variety of error models have been obtained by methods which do not use minimum-weight perfect matching, showing that such thresholds can be achieved in polynomial time. It is an open question whether these results can also be achieved by minimum-weight perfect matching. In this work, we use belief propagation and a novel algorithm for producing edge weights to increase the utility of minimum-weight perfect matching for decoding surface codes. This allows us to correct depolarizing errors using the rotated surface code, obtaining a threshold of 17.76±0.02%17.76 \pm 0.02 \%. This is larger than the threshold achieved by previous matching-based decoders (14.88±0.02%14.88 \pm 0.02 \%), though still below the known upper bound of ∼18.9%\sim 18.9 \%.Comment: 19 pages, 13 figures, published in Quantum, available at https://quantum-journal.org/papers/q-2018-10-19-102

    Reintroducing credal networks under epistemic irrelevance

    Get PDF
    A credal network under epistemic irrelevance is a generalised version of a Bayesian network that loosens its two main building blocks. On the one hand, the local probabilities do not have to be specified exactly. On the other hand, the assumptions of independence do not have to hold exactly. Conceptually, these credal networks are elegant and useful. However, in practice, they have long remained very hard to work with, both theoretically and computationally. This paper provides a general introduction to this type of credal networks and presents some promising new theoretical developments that were recently proved using sets of desirable gambles and lower previsions. We explain these developments in terms of probabilities and expectations, thereby making them more easily accessible to the Bayesian network community
    • …
    corecore