2 research outputs found

    Electrical Characterisation of III-V Nanowire MOSFETs

    Get PDF
    The ever increasing demand for faster and more energy-efficient electricalcomputation and communication presents severe challenges for the semiconductor industry and particularly for the metal-oxidesemiconductorfield-effect transistor (MOSFET), which is the workhorse of modern electronics. III-V materials exhibit higher carrier mobilities than the most commonly used MOSFET material Si so that the realisation of III-V MOSFETs can enable higher operation speeds and lower drive voltages than that which is possible in Si electronics. A lowering of the transistor drive voltage can be further facilitated by employing gate-all-around nanowire geometries or novel operation principles. However, III-V materials bring about their own challenges related to material quality and to the quality of the gate oxide on top of a III-V MOSFET channel.This thesis presents detailed electrical characterisations of two types of (vertical) III-V nanowire transistors: MOSFETs based on conventional thermionic emission; and Tunnel FETs, which utilise quantum-mechanical tunnelling instead to control the device current and reach inverse subthreshold slopes below the thermal limit of 60 mV/decade. Transistor characterisations span over fourteen orders of magnitude in frequency/time constants and temperatures from 11 K to 370 K.The first part of the thesis focusses on the characterisation of electrically active material defects (‘traps’) related to the gate stack. Low-frequency noise measurements yielded border trap densities of 10^18 to 10^20 cm^-3 eV^-1 and hysteresis measurements yielded effective trap densities – projected to theoxide/semiconductor interface – of 2x10^12 to 3x10^13 cm^-2 eV^-1. Random telegraph noise measurements revealed that individual oxide traps can locally shift the channel energy bands by a few millielectronvolts and that such defects can be located at energies from inside the semiconductor band gap all the way into the conduction band.Small-signal radio frequency (RF) measurements revealed that parts of the wide oxide trap distribution can still interact with carriers in the MOSFET channel at gigahertz frequencies. This causes frequency hystereses in the small-signal transconductance and capacitances and can decrease the RF gains by a few decibels. A comprehensive small-signal model was developed, which takes into account these dispersions, and the model was applied to guide improvements of the physical structure of vertical RF MOSFETs. This resulted in values for the cutoff frequency fT and the maximum oscillation frequency fmax of about 150 GHz in vertical III-V nanowire MOSFETs.Bias temperature instability measurements and the integration of (lateral) III-V nanowire MOSFETs in a back end of line process were carried out as complements to the main focus of this thesis. The results of this thesis provide a broad perspective of the properties of gate oxide traps and of the RF performance of III-V nanowire transistors and can act as guidelines for further improvement and finally the integration of III-V nanowire MOSFETs in circuits

    III-V Nanowire MOSFET High-Frequency Technology Platform

    Get PDF
    This thesis addresses the main challenges in using III-V nanowireMOSFETs for high-frequency applications by building a III-Vvertical nanowire MOSFET technology library. The initial devicelayout is designed, based on the assessment of the current III-V verticalnanowire MOSFET with state-of-the-art performance. The layout providesan option to scale device dimensions for the purpose of designing varioushigh-frequency circuits. The nanowire MOSFET device is described using1D transport theory, and modeled with a compact virtual source model.Device assessment is performed at high frequencies, where sidewall spaceroverlaps have been identified and mitigated in subsequent design iterations.In the final stage of the design, the device is simulated with fT > 500 GHz,and fmax > 700 GHz.Alongside the III-V vertical nanowire device technology platform, adedicated and adopted RF and mm-wave back-end-of-line (BEOL) hasbeen developed. Investigation into the transmission line parameters revealsa line attenuation of 0.5 dB/mm at 50 GHz, corresponding to state-ofthe-art values in many mm-wave integrated circuit technologies. Severalkey passive components have been characterized and modeled. The deviceinterface module - an interconnect via stack, is one of the prominentcomponents. Additionally, the approach is used to integrate ferroelectricMOS capacitors, in a unique setting where their ferroelectric behavior iscaptured at RF and mm-wave frequencies.Finally, circuits have been designed. A proof-of-concept circuit, designedand fabricated with III-V lateral nanowire MOSFETs and mm-wave BEOL, validates the accuracy of the BEOL models, and the circuit design. Thedevice scaling is shown to be reflected into circuit performance, in aunique device characterization through an amplifier noise-matched inputstage. Furthermore, vertical-nanowire-MOSFET-based circuits have beendesigned with passive feedback components that resonate with the devicegate-drain capacitance. The concept enables for device unilateralizationand gain boosting. The designed low-noise amplifiers have matching pointsindependent on the MOSFET gate length, based on capacitance balancebetween the intrinsic and extrinsic capacitance contributions, in a verticalgeometry. The proposed technology platform offers flexibility in device andcircuit design and provides novel III-V vertical nanowire MOSFET devicesand circuits as a viable option to future wireless communication systems
    corecore