15 research outputs found

    Type-based MCMC for Sampling Tree Fragments from Forests

    Full text link

    Query-Driven Sampling for Collective Entity Resolution

    Full text link
    Probabilistic databases play a preeminent role in the processing and management of uncertain data. Recently, many database research efforts have integrated probabilistic models into databases to support tasks such as information extraction and labeling. Many of these efforts are based on batch oriented inference which inhibits a realtime workflow. One important task is entity resolution (ER). ER is the process of determining records (mentions) in a database that correspond to the same real-world entity. Traditional pairwise ER methods can lead to inconsistencies and low accuracy due to localized decisions. Leading ER systems solve this problem by collectively resolving all records using a probabilistic graphical model and Markov chain Monte Carlo (MCMC) inference. However, for large datasets this is an extremely expensive process. One key observation is that, such exhaustive ER process incurs a huge up-front cost, which is wasteful in practice because most users are interested in only a small subset of entities. In this paper, we advocate pay-as-you-go entity resolution by developing a number of query-driven collective ER techniques. We introduce two classes of SQL queries that involve ER operators --- selection-driven ER and join-driven ER. We implement novel variations of the MCMC Metropolis Hastings algorithm to generate biased samples and selectivity-based scheduling algorithms to support the two classes of ER queries. Finally, we show that query-driven ER algorithms can converge and return results within minutes over a database populated with the extraction from a newswire dataset containing 71 million mentions

    Modelling the Lexicon in Unsupervised Part of Speech Induction

    Full text link
    Automatically inducing the syntactic part-of-speech categories for words in text is a fundamental task in Computational Linguistics. While the performance of unsupervised tagging models has been slowly improving, current state-of-the-art systems make the obviously incorrect assumption that all tokens of a given word type must share a single part-of-speech tag. This one-tag-per-type heuristic counters the tendency of Hidden Markov Model based taggers to over generate tags for a given word type. However, it is clearly incompatible with basic syntactic theory. In this paper we extend a state-of-the-art Pitman-Yor Hidden Markov Model tagger with an explicit model of the lexicon. In doing so we are able to incorporate a soft bias towards inducing few tags per type. We develop a particle filter for drawing samples from the posterior of our model and present empirical results that show that our model is competitive with and faster than the state-of-the-art without making any unrealistic restrictions.Comment: To be presented at the 14th Conference of the European Chapter of the Association for Computational Linguistic

    Modeling Syntactic Context Improves Morphological Segmentation

    Get PDF
    The connection between part-of-speech (POS) categories and morphological properties is well-documented in linguistics but underutilized in text processing systems. This paper proposes a novel model for morphological segmentation that is driven by this connection. Our model learns that words with common affixes are likely to be in the same syntactic category and uses learned syntactic categories to refine the segmentation boundaries of words. Our results demonstrate that incorporating POS categorization yields substantial performance gains on morphological segmentation of Arabic.United States. Army Research Office (contract/grant number W911NF-10-1-0533)U.S. Army Research Laboratory (contract/grant number W911NF-10-1-0533

    Mining Semantic Loop Idioms

    Get PDF

    Practical Natural Language Processing for Low-Resource Languages.

    Full text link
    As the Internet and World Wide Web have continued to gain widespread adoption, the linguistic diversity represented has also been growing. Simultaneously the field of Linguistics is facing a crisis of the opposite sort. Languages are becoming extinct faster than ever before and linguists now estimate that the world could lose more than half of its linguistic diversity by the year 2100. This is a special time for Computational Linguistics; this field has unprecedented access to a great number of low-resource languages, readily available to be studied, but needs to act quickly before political, social, and economic pressures cause these languages to disappear from the Web. Most work in Computational Linguistics and Natural Language Processing (NLP) focuses on English or other languages that have text corpora of hundreds of millions of words. In this work, we present methods for automatically building NLP tools for low-resource languages with minimal need for human annotation in these languages. We start first with language identification, specifically focusing on word-level language identification, an understudied variant that is necessary for processing Web text and develop highly accurate machine learning methods for this problem. From there we move onto the problems of part-of-speech tagging and dependency parsing. With both of these problems we extend the current state of the art in projected learning to make use of multiple high-resource source languages instead of just a single language. In both tasks, we are able to improve on the best current methods. All of these tools are practically realized in the "Minority Language Server," an online tool that brings these techniques together with low-resource language text on the Web. The Minority Language Server, starting with only a few words in a language can automatically collect text in a language, identify its language and tag its parts of speech. We hope that this system is able to provide a convincing proof of concept for the automatic collection and processing of low-resource language text from the Web, and one that can hopefully be realized before it is too late.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113373/1/benking_1.pd

    Mining Semantic Loop Idioms

    Get PDF
    To write code, developers stitch together patterns, like API protocols or data structure traversals. Discovering these patterns can identify inconsistencies in code or opportunities to replace these patterns with an API or a language construct. We present coiling, a technique for automatically mining code for semantic idioms: surprisingly probable, semantic patterns. We specialize coiling for loop idioms, semantic idioms of loops. First, we show that automatically identifiable patterns exist, in great numbers, with a largescale empirical study of loops over 25MLOC. We find that most loops in this corpus are simple and predictable: 90 percent have fewer than 15LOC and 90 percent have no nesting and very simple control. Encouraged by this result, we then mine loop idioms over a second, buildable corpus. Over this corpus, we show that only 50 loop idioms cover 50 percent of the concrete loops. Our framework opens the door to data-driven tool and language design, discovering opportunities to introduce new API calls and language constructs. Loop idioms show that LINQ would benefit from an Enumerate operator. This can be confirmed by the exitence of a StackOverflow question with 542k views that requests precisely this feature
    corecore