59,781 research outputs found
A Self-Tuning zSlices-Based General Type-2 Fuzzy PI Controller
The interval type-2 fuzzy Proportional-Integral (PI) controller (IT2-FPI) might be able to handle high levels of uncertainties to produce a satisfactory control performance, which could be potentially due to the robust performance as a result of the smoother control surface around the steady state. However, the transient state and disturbance rejection performance of the IT2-FPI may degrade in comparison with the type-1 fuzzy PI (T1-FPI) counterpart. This drawback can be resolved via general type-2 fuzzy PI controllers which can provide a tradeoff between the robust control performance of the IT2-FPI and the acceptable transient and disturbance rejection performance of the type-1 PI controllers. In this paper, we will present a zSlices-based general type-2 fuzzy PI controller (zT2-FPI), where the secondary membership functions (SMFs) of the antecedent general type-2 fuzzy sets are adjusted in an online manner. We will examine the effect of the SMF on the closed-system control performance to investigate their induced performance improvements. This paper will focus on the case followed in conventional or self-tuning fuzzy controller design strategies, where the aim is to decrease the integral action sufficiently around the steady state to have robust system performance against noises and parameter variations. The zSlices approach will give the opportunity to construct the zT2-FPI controller as a collection of IT2-FPI and T1-FPI controllers. We will present a new way to design a zT2-FPI controller based on a single tuning parameter where the features of T1-FPI (speed) and IT2-FPI (robustness) are combined without increasing the computational complexity much when compared with the IT2-FPI structure. This will allow the proposed zT2-FPI controller to achieve the desired transient state response and provide an efficient disturbance rejection and robust control performance. We will present several simulation studies on benchmark systems, in addition to real-world experiments that were performed using the PIONEER 3-DX mobile robot that will act as a platform to evaluate the proposed systems. The results will show that the control performance of the self-tuning zT2-FPI control structure enhances both the transient state and disturbance rejection performances when compared with the type-1 and IT2-FPI counterparts. In addition, the self-tuning zT2-FPI is more robust to disturbances, noise, and uncertainties when compared with the type-1 and interval type-2 fuzzy counterparts
A layered fuzzy logic controller for nonholonomic car-like robot
A system for real time navigation of a nonholonomic car-like robot in a dynamic environment consists of two layers is described: a Sugeno-type fuzzy motion planner; and a modified proportional navigation based fuzzy controller. The system philosophy is inspired by human routing when moving between obstacles based on visual information including right and left views to identify the next step to the goal. A Sugeno-type fuzzy motion planner of four inputs one output is introduced to give a clear direction to the robot controller. The second stage is a modified proportional navigation based fuzzy controller based on the proportional navigation guidance law and able to optimize the robot's behavior in real time, i.e. to avoid stationary and moving obstacles in its local environment obeying kinematics constraints. The system has an intelligent combination of two behaviors to cope with obstacle avoidance as well as approaching a target using a proportional navigation path. The system was simulated and tested on different environments with various obstacle distributions. The simulation reveals that the system gives good results for various simple environments
Extruder for food product (otak–otak) with heater and roll cutter
Food extrusion is a form of extrusion used in food industries. It is a process by which a set of mixed ingredients are forced through an opening in a perforated plate or die with a design specific to the food, and is then cut to a specified size by blades [1]. Summary of the invention principal objects of the present invention are to provide a machine capable of continuously producing food products having an’ extruded filler material of meat or similarity and an extruded outer covering of a moldable food product, such as otak-otak, that completely envelopes the filler material
Fractional Order Fuzzy Control of Nuclear Reactor Power with Thermal-Hydraulic Effects in the Presence of Random Network Induced Delay and Sensor Noise having Long Range Dependence
Nonlinear state space modeling of a nuclear reactor has been done for the
purpose of controlling its global power in load following mode. The nonlinear
state space model has been linearized at different percentage of reactor powers
and a novel fractional order (FO) fuzzy proportional integral derivative (PID)
controller is designed using real coded Genetic Algorithm (GA) to control the
reactor power level at various operating conditions. The effectiveness of using
the fuzzy FOPID controller over conventional fuzzy PID controllers has been
shown with numerical simulations. The controllers tuned with the highest power
models are shown to work well at other operating conditions as well; over the
lowest power model based design and hence are robust with respect to the
changes in nuclear reactor operating power levels. This paper also analyzes the
degradation of nuclear reactor power signal due to network induced random
delays in shared communication network and due to sensor noise while being
fed-back to the Reactor Regulating System (RRS). The effect of long range
dependence (LRD) which is a practical consideration for the stochastic
processes like network induced delay and sensor noise has been tackled by
optimum tuning of FO fuzzy PID controllers using GA, while also taking the
operating point shift into consideration.Comment: 33 pages, 19 figure
A novel technique for load frequency control of multi-area power systems
In this paper, an adaptive type-2 fuzzy controller is proposed to control the load frequency of a two-area power system based on descending gradient training and error back-propagation. The dynamics of the system are completely uncertain. The multilayer perceptron (MLP) artificial neural network structure is used to extract Jacobian and estimate the system model, and then, the estimated model is applied to the controller, online. A proportional–derivative (PD) controller is added to the type-2 fuzzy controller, which increases the stability and robustness of the system against disturbances. The adaptation, being real-time and independency of the system parameters are new features of the proposed controller. Carrying out simulations on New England 39-bus power system, the performance of the proposed controller is compared with the conventional PI, PID and internal model control based on PID (IMC-PID) controllers. Simulation results indicate that our proposed controller method outperforms the conventional controllers in terms of transient response and stability
A survey of fuzzy control for stabilized platforms
This paper focusses on the application of fuzzy control techniques (fuzzy
type-1 and type-2) and their hybrid forms (Hybrid adaptive fuzzy controller and
fuzzy-PID controller) in the area of stabilized platforms. It represents an
attempt to cover the basic principles and concepts of fuzzy control in
stabilization and position control, with an outline of a number of recent
applications used in advanced control of stabilized platform. Overall, in this
survey we will make some comparisons with the classical control techniques such
us PID control to demonstrate the advantages and disadvantages of the
application of fuzzy control techniques
- …
