16,560 research outputs found

    Multiaccess Channels with State Known to One Encoder: Another Case of Degraded Message Sets

    Full text link
    We consider a two-user state-dependent multiaccess channel in which only one of the encoders is informed, non-causally, of the channel states. Two independent messages are transmitted: a common message transmitted by both the informed and uninformed encoders, and an individual message transmitted by only the uninformed encoder. We derive inner and outer bounds on the capacity region of this model in the discrete memoryless case as well as the Gaussian case. Further, we show that the bounds for the Gaussian case are tight in some special cases.Comment: 5 pages, Proc. of IEEE International Symposium on Information theory, ISIT 2009, Seoul, Kore

    Advances in Calibration and Imaging Techniques in Radio Interferometry

    Full text link
    This paper summarizes some of the major calibration and image reconstruction techniques used in radio interferometry and describes them in a common mathematical framework. The use of this framework has a number of benefits, ranging from clarification of the fundamentals, use of standard numerical optimization techniques, and generalization or specialization to new algorithms

    Degraded Broadcast Diamond Channels with Non-Causal State Information at the Source

    Full text link
    A state-dependent degraded broadcast diamond channel is studied where the source-to-relays cut is modeled with two noiseless, finite-capacity digital links with a degraded broadcasting structure, while the relays-to-destination cut is a general multiple access channel controlled by a random state. It is assumed that the source has non-causal channel state information and the relays have no state information. Under this model, first, the capacity is characterized for the case where the destination has state information, i.e., has access to the state sequence. It is demonstrated that in this case, a joint message and state transmission scheme via binning is optimal. Next, the case where the destination does not have state information, i.e., the case with state information at the source only, is considered. For this scenario, lower and upper bounds on the capacity are derived for the general discrete memoryless model. Achievable rates are then computed for the case in which the relays-to-destination cut is affected by an additive Gaussian state. Numerical results are provided that illuminate the performance advantages that can be accrued by leveraging non-causal state information at the source.Comment: Submitted to IEEE Transactions on Information Theory, Feb. 201
    corecore