3,521 research outputs found

    Information-Theoretic Bounds for Multiround Function Computation in Collocated Networks

    Full text link
    We study the limits of communication efficiency for function computation in collocated networks within the framework of multi-terminal block source coding theory. With the goal of computing a desired function of sources at a sink, nodes interact with each other through a sequence of error-free, network-wide broadcasts of finite-rate messages. For any function of independent sources, we derive a computable characterization of the set of all feasible message coding rates - the rate region - in terms of single-letter information measures. We show that when computing symmetric functions of binary sources, the sink will inevitably learn certain additional information which is not demanded in computing the function. This conceptual understanding leads to new improved bounds for the minimum sum-rate. The new bounds are shown to be orderwise better than those based on cut-sets as the network scales. The scaling law of the minimum sum-rate is explored for different classes of symmetric functions and source parameters.Comment: 9 pages. A 5-page version without appendices was submitted to IEEE International Symposium on Information Theory (ISIT), 2009. This version contains complete proofs as appendice

    On Zero-Error Source Coding with Feedback

    Full text link
    We consider the problem of zero error source coding with limited feedback when side information is present at the receiver. First, we derive an achievable rate region for arbitrary joint distributions on the source and the side information. When all source pairs of source and side information symbols are observable with non-zero probability, we show that this characterization gives the entire rate region. Next, we demonstrate a class of sources for which asymptotically zero feedback suffices to achieve zero-error coding at the rate promised by the Slepian-Wolf bound for asymptotically lossless coding. Finally, we illustrate these results with the aid of three simple examples

    Network Coding for Computing: Cut-Set Bounds

    Full text link
    The following \textit{network computing} problem is considered. Source nodes in a directed acyclic network generate independent messages and a single receiver node computes a target function ff of the messages. The objective is to maximize the average number of times ff can be computed per network usage, i.e., the ``computing capacity''. The \textit{network coding} problem for a single-receiver network is a special case of the network computing problem in which all of the source messages must be reproduced at the receiver. For network coding with a single receiver, routing is known to achieve the capacity by achieving the network \textit{min-cut} upper bound. We extend the definition of min-cut to the network computing problem and show that the min-cut is still an upper bound on the maximum achievable rate and is tight for computing (using coding) any target function in multi-edge tree networks and for computing linear target functions in any network. We also study the bound's tightness for different classes of target functions. In particular, we give a lower bound on the computing capacity in terms of the Steiner tree packing number and a different bound for symmetric functions. We also show that for certain networks and target functions, the computing capacity can be less than an arbitrarily small fraction of the min-cut bound.Comment: Submitted to the IEEE Transactions on Information Theory (Special Issue on Facets of Coding Theory: from Algorithms to Networks); Revised on Aug 9, 201

    Processing and Transmission of Information

    Get PDF
    Contains reports on seven research projects.Lincoln Laboratory, Purchase Order DDL B-00337U.S. ArmyU.S. NavyU.S. Air Force under Air Force Contract AF19(604)-7400National Institutes of Health (Grant MH-04737-02

    Multiuser Switched Diversity Scheduling Schemes

    Full text link
    Multiuser switched-diversity scheduling schemes were recently proposed in order to overcome the heavy feedback requirements of conventional opportunistic scheduling schemes by applying a threshold-based, distributed, and ordered scheduling mechanism. The main idea behind these schemes is that slight reduction in the prospected multiuser diversity gains is an acceptable trade-off for great savings in terms of required channel-state-information feedback messages. In this work, we characterize the achievable rate region of multiuser switched diversity systems and compare it with the rate region of full feedback multiuser diversity systems. We propose also a novel proportional fair multiuser switched-based scheduling scheme and we demonstrate that it can be optimized using a practical and distributed method to obtain the feedback thresholds. We finally demonstrate by numerical examples that switched-diversity scheduling schemes operate within 0.3 bits/sec/Hz from the ultimate network capacity of full feedback systems in Rayleigh fading conditions.Comment: Accepted at IEEE Transactions on Communications, to appear 2012, funded by NPRP grant 08-577-2-241 from QNR

    On Two-Pair Two-Way Relay Channel with an Intermittently Available Relay

    Full text link
    When multiple users share the same resource for physical layer cooperation such as relay terminals in their vicinities, this shared resource may not be always available for every user, and it is critical for transmitting terminals to know whether other users have access to that common resource in order to better utilize it. Failing to learn this critical piece of information may cause severe issues in the design of such cooperative systems. In this paper, we address this problem by investigating a two-pair two-way relay channel with an intermittently available relay. In the model, each pair of users need to exchange their messages within their own pair via the shared relay. The shared relay, however, is only intermittently available for the users to access. The accessing activities of different pairs of users are governed by independent Bernoulli random processes. Our main contribution is the characterization of the capacity region to within a bounded gap in a symmetric setting, for both delayed and instantaneous state information at transmitters. An interesting observation is that the bottleneck for information flow is the quality of state information (delayed or instantaneous) available at the relay, not those at the end users. To the best of our knowledge, our work is the first result regarding how the shared intermittent relay should cooperate with multiple pairs of users in such a two-way cooperative network.Comment: extended version of ISIT 2015 pape
    • …
    corecore