22,295 research outputs found

    An academic review: applications of data mining techniques in finance industry

    Get PDF
    With the development of Internet techniques, data volumes are doubling every two years, faster than predicted by Moore’s Law. Big Data Analytics becomes particularly important for enterprise business. Modern computational technologies will provide effective tools to help understand hugely accumulated data and leverage this information to get insights into the finance industry. In order to get actionable insights into the business, data has become most valuable asset of financial organisations, as there are no physical products in finance industry to manufacture. This is where data mining techniques come to their rescue by allowing access to the right information at the right time. These techniques are used by the finance industry in various areas such as fraud detection, intelligent forecasting, credit rating, loan management, customer profiling, money laundering, marketing and prediction of price movements to name a few. This work aims to survey the research on data mining techniques applied to the finance industry from 2010 to 2015.The review finds that Stock prediction and Credit rating have received most attention of researchers, compared to Loan prediction, Money Laundering and Time Series prediction. Due to the dynamics, uncertainty and variety of data, nonlinear mapping techniques have been deeply studied than linear techniques. Also it has been proved that hybrid methods are more accurate in prediction, closely followed by Neural Network technique. This survey could provide a clue of applications of data mining techniques for finance industry, and a summary of methodologies for researchers in this area. Especially, it could provide a good vision of Data Mining Techniques in computational finance for beginners who want to work in the field of computational finance

    Financial crises and bank failures: a review of prediction methods

    Get PDF
    In this article we analyze financial and economic circumstances associated with the U.S. subprime mortgage crisis and the global financial turmoil that has led to severe crises in many countries. We suggest that the level of cross-border holdings of long-term securities between the United States and the rest of the world may indicate a direct link between the turmoil in the securitized market originated in the United States and that in other countries. We provide a summary of empirical results obtained in several Economics and Operations Research papers that attempt to explain, predict, or suggest remedies for financial crises or banking defaults; we also extensively outline the methodologies used in them. The intent of this article is to promote future empirical research for preventing financial crises.Subprime mortgage ; Financial crises

    Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback

    Full text link
    Machine translation is a natural candidate problem for reinforcement learning from human feedback: users provide quick, dirty ratings on candidate translations to guide a system to improve. Yet, current neural machine translation training focuses on expensive human-generated reference translations. We describe a reinforcement learning algorithm that improves neural machine translation systems from simulated human feedback. Our algorithm combines the advantage actor-critic algorithm (Mnih et al., 2016) with the attention-based neural encoder-decoder architecture (Luong et al., 2015). This algorithm (a) is well-designed for problems with a large action space and delayed rewards, (b) effectively optimizes traditional corpus-level machine translation metrics, and (c) is robust to skewed, high-variance, granular feedback modeled after actual human behaviors.Comment: 11 pages, 5 figures, In Proceedings of Empirical Methods in Natural Language Processing (EMNLP) 201

    Modeling Financial Time Series with Artificial Neural Networks

    Full text link
    Financial time series convey the decisions and actions of a population of human actors over time. Econometric and regressive models have been developed in the past decades for analyzing these time series. More recently, biologically inspired artificial neural network models have been shown to overcome some of the main challenges of traditional techniques by better exploiting the non-linear, non-stationary, and oscillatory nature of noisy, chaotic human interactions. This review paper explores the options, benefits, and weaknesses of the various forms of artificial neural networks as compared with regression techniques in the field of financial time series analysis.CELEST, a National Science Foundation Science of Learning Center (SBE-0354378); SyNAPSE program of the Defense Advanced Research Project Agency (HR001109-03-0001

    Estimation of Default Probabilities with Support Vector Machines

    Get PDF
    Predicting default probabilities is important for firms and banks to operate successfully and to estimate their specific risks. There are many reasons to use nonlinear techniques for predicting bankruptcy from financial ratios. Here we propose the so called Support Vector Machine (SVM) to estimate default probabilities of German firms. Our analysis is based on the Creditreform database. The results reveal that the most important eight predictors related to bankruptcy for these German firms belong to the ratios of activity, profitability, liquidity, leverage and the percentage of incremental inventories. Based on the performance measures, the SVM tool can predict a firms default risk and identify the insolvent firm more accurately than the benchmark logit model. The sensitivity investigation and a corresponding visualization tool reveal that the classifying ability of SVM appears to be superior over a wide range of the SVM parameters. Based on the nonparametric Nadaraya-Watson estimator, the expected returns predicted by the SVM for regression have a significant positive linear relationship with the risk scores obtained for classification. This evidence is stronger than empirical results for the CAPM based on a linear regression and confirms that higher risks need to be compensated by higher potential returns.Support Vector Machine, Bankruptcy, Default Probabilities Prediction, Expected Profitability, CAPM.
    • 

    corecore