2,825 research outputs found

    A Tandem Fluid Network with L\'evy Input in Heavy Traffic

    Get PDF
    In this paper we study the stationary workload distribution of a fluid tandem queue in heavy traffic. We consider different types of L\'evy input, covering compound Poisson, α\alpha-stable L\'evy motion (with 1<α<21<\alpha<2), and Brownian motion. In our analysis we separately deal with L\'evy input processes with increments that have finite and infinite variance. A distinguishing feature of this paper is that we do not only consider the usual heavy-traffic regime, in which the load at one of the nodes goes to unity, but also a regime in which we simultaneously let the load of both servers tend to one, which, as it turns out, leads to entirely different heavy-traffic asymptotics. Numerical experiments indicate that under specific conditions the resulting simultaneous heavy-traffic approximation significantly outperforms the usual heavy-traffic approximation

    Random Fluid Limit of an Overloaded Polling Model

    Get PDF
    In the present paper, we study the evolution of an overloaded cyclic polling model that starts empty. Exploiting a connection with multitype branching processes, we derive fluid asymptotics for the joint queue length process. Under passage to the fluid dynamics, the server switches between the queues infinitely many times in any finite time interval causing frequent oscillatory behavior of the fluid limit in the neighborhood of zero. Moreover, the fluid limit is random. Additionally, we suggest a method that establishes finiteness of moments of the busy period in an M/G/1 queue.Comment: 36 pages, 2 picture

    Scaling limits for infinite-server systems in a random environment

    Get PDF
    This paper studies the effect of an overdispersed arrival process on the performance of an infinite-server system. In our setup, a random environment is modeled by drawing an arrival rate Λ\Lambda from a given distribution every Δ\Delta time units, yielding an i.i.d. sequence of arrival rates Λ1,Λ2,\Lambda_1,\Lambda_2, \ldots. Applying a martingale central limit theorem, we obtain a functional central limit theorem for the scaled queue length process. We proceed to large deviations and derive the logarithmic asymptotics of the queue length's tail probabilities. As it turns out, in a rapidly changing environment (i.e., Δ\Delta is small relative to Λ\Lambda) the overdispersion of the arrival process hardly affects system behavior, whereas in a slowly changing random environment it is fundamentally different; this general finding applies to both the central limit and the large deviations regime. We extend our results to the setting where each arrival creates a job in multiple infinite-server queues

    Simple and explicit bounds for multi-server queues with 1/(1ρ)1/(1 - \rho) (and sometimes better) scaling

    Full text link
    We consider the FCFS GI/GI/nGI/GI/n queue, and prove the first simple and explicit bounds that scale as 11ρ\frac{1}{1-\rho} (and sometimes better). Here ρ\rho denotes the corresponding traffic intensity. Conceptually, our results can be viewed as a multi-server analogue of Kingman's bound. Our main results are bounds for the tail of the steady-state queue length and the steady-state probability of delay. The strength of our bounds (e.g. in the form of tail decay rate) is a function of how many moments of the inter-arrival and service distributions are assumed finite. More formally, suppose that the inter-arrival and service times (distributed as random variables AA and SS respectively) have finite rrth moment for some r>2.r > 2. Let μA\mu_A (respectively μS\mu_S) denote 1E[A]\frac{1}{\mathbb{E}[A]} (respectively 1E[S]\frac{1}{\mathbb{E}[S]}). Then our bounds (also for higher moments) are simple and explicit functions of E[(AμA)r],E[(SμS)r],r\mathbb{E}\big[(A \mu_A)^r\big], \mathbb{E}\big[(S \mu_S)^r\big], r, and 11ρ\frac{1}{1-\rho} only. Our bounds scale gracefully even when the number of servers grows large and the traffic intensity converges to unity simultaneously, as in the Halfin-Whitt scaling regime. Some of our bounds scale better than 11ρ\frac{1}{1-\rho} in certain asymptotic regimes. More precisely, they scale as 11ρ\frac{1}{1-\rho} multiplied by an inverse polynomial in n(1ρ)2.n(1 - \rho)^2. These results formalize the intuition that bounds should be tighter in light traffic as well as certain heavy-traffic regimes (e.g. with ρ\rho fixed and nn large). In these same asymptotic regimes we also prove bounds for the tail of the steady-state number in service. Our main proofs proceed by explicitly analyzing the bounding process which arises in the stochastic comparison bounds of amarnik and Goldberg for multi-server queues. Along the way we derive several novel results for suprema of random walks and pooled renewal processes which may be of independent interest. We also prove several additional bounds using drift arguments (which have much smaller pre-factors), and make several conjectures which would imply further related bounds and generalizations
    corecore