5 research outputs found

    Two-choice regulation in heterogeneous closed networks

    Full text link
    A heterogeneous closed network with one-server queues with finite capacity and one infinite-server queue is studied. A target application is bike-sharing systems. Heterogeneity is taken into account through clusters whose queues have the same parameters. Incentives to the customer to go to the least loaded one-server queue among two chosen within a cluster are investigated. By mean-field arguments, the limiting queue length stationary distribution as the number of queues gets large is analytically tractable. Moreover, when all customers follow incentives, the probability that a queue is empty or full is approximated. Sizing the system to improve performance is reachable under this policy.Comment: 19 pages, 4 figure

    Incentives and Redistribution in Homogeneous Bike-Sharing Systems with Stations of Finite Capacity

    Get PDF
    Bike-sharing systems are becoming important for urban transportation. In such systems, users arrive at a station, take a bike and use it for a while, then return it to another station of their choice. Each station has a finite capacity: it cannot host more bikes than its capacity. We propose a stochastic model of an homogeneous bike-sharing system and study the effect of users random choices on the number of problematic stations, i.e., stations that, at a given time, have no bikes available or no available spots for bikes to be returned to. We quantify the influence of the station capacities, and we compute the fleet size that is optimal in terms of minimizing the proportion of problematic stations. Even in a homogeneous city, the system exhibits a poor performance: the minimal proportion of problematic stations is of the order of (but not lower than) the inverse of the capacity. We show that simple incentives, such as suggesting users to return to the least loaded station among two stations, improve the situation by an exponential factor. We also compute the rate at which bikes have to be redistributed by trucks to insure a given quality of service. This rate is of the order of the inverse of the station capacity. For all cases considered, the fleet size that corresponds to the best performance is half of the total number of spots plus a few more, the value of the few more can be computed in closed-form as a function of the system parameters. It corresponds to the average number of bikes in circulation

    Incentives and redistribution in homogeneous bike-sharing systems with stations of finite capacity

    No full text
    International audienceBike-sharing systems are becoming important for urban transportation. In these systems, users arrive at a station, pick up a bike, use it for a while, and then return it to another station of their choice. Each station has a finite capacity: it cannot host more bikes than its capacity. We propose a stochastic model of an homogeneous bike-sharing system and study the effect of the randomness of user choices on the number of problematic stations, i.e., stations that, at a given time, have no bikes available or no available spots for bikes to be returned to. We quantify the influence of the station capacities, and we compute the fleet size that is optimal in terms of minimizing the proportion of problematic stations. Even in a homogeneous city, the system exhibits a poor performance: the minimal proportion of problematic stations is of the order of the inverse of the capacity. We show that simple incentives, such as suggesting users to return to the least loaded station among two stations, improve the situation by an exponential factor. We also compute the rate at which bikes have to be redistributed by trucks for a given quality of service. This rate is of the order of the inverse of the station capacity. For all cases considered, the fleet size that corre-sponds to the best performance is half of the total number of spots plus a few more, the value of the few more can be computed in closed-form as a function of the system parameters. It corresponds to the average number of bikes in circulation

    Two-choice regulation in heterogeneous closed networks

    No full text
    International audienc
    corecore