12,165 research outputs found

    Memory effects in biochemical networks as the natural counterpart of extrinsic noise

    Full text link
    We show that in the generic situation where a biological network, e.g. a protein interaction network, is in fact a subnetwork embedded in a larger "bulk" network, the presence of the bulk causes not just extrinsic noise but also memory effects. This means that the dynamics of the subnetwork will depend not only on its present state, but also its past. We use projection techniques to get explicit expressions for the memory functions that encode such memory effects, for generic protein interaction networks involving binary and unary reactions such as complex formation and phosphorylation, respectively. Remarkably, in the limit of low intrinsic copy-number noise such expressions can be obtained even for nonlinear dependences on the past. We illustrate the method with examples from a protein interaction network around epidermal growth factor receptor (EGFR), which is relevant to cancer signalling. These examples demonstrate that inclusion of memory terms is not only important conceptually but also leads to substantially higher quantitative accuracy in the predicted subnetwork dynamics

    Nonlinear dynamical tides in white dwarf binaries

    Get PDF
    Compact white dwarf (WD) binaries are important sources for space-based gravitational-wave (GW) observatories, and an increasing number of them are being identified by surveys like ZTF. We study the effects of nonlinear dynamical tides in such binaries. We focus on the global three-mode parametric instability and show that it has a much lower threshold energy than the local wave-breaking condition studied previously. By integrating networks of coupled modes, we calculate the tidal dissipation rate as a function of orbital period. We construct phenomenological models that match these numerical results and use them to evaluate the spin and luminosity evolution of a WD binary. While in linear theory the WD's spin frequency can lock to the orbital frequency, we find that such a lock cannot be maintained when nonlinear effects are taken into account. Instead, as the orbit decays, the spin and orbit go in and out of synchronization. Each time they go out of synchronization, there is a brief but significant dip in the tidal heating rate. While most WDs in compact binaries should have luminosities that are similar to previous traveling-wave estimates, a few percent should be about ten times dimmer because they reside in heating rate dips. This offers a potential explanation for the low luminosity of the CO WD in J0651. Lastly, we consider the impact of tides on the GW signal and show that LISA and TianGO can constrain the WD's moment of inertia to better than 1% for deci-Hz systems.Comment: 21 pages, 18 figures. Submitted to MNRA

    How single neuron properties shape chaotic dynamics and signal transmission in random neural networks

    Full text link
    While most models of randomly connected networks assume nodes with simple dynamics, nodes in realistic highly connected networks, such as neurons in the brain, exhibit intrinsic dynamics over multiple timescales. We analyze how the dynamical properties of nodes (such as single neurons) and recurrent connections interact to shape the effective dynamics in large randomly connected networks. A novel dynamical mean-field theory for strongly connected networks of multi-dimensional rate units shows that the power spectrum of the network activity in the chaotic phase emerges from a nonlinear sharpening of the frequency response function of single units. For the case of two-dimensional rate units with strong adaptation, we find that the network exhibits a state of "resonant chaos", characterized by robust, narrow-band stochastic oscillations. The coherence of stochastic oscillations is maximal at the onset of chaos and their correlation time scales with the adaptation timescale of single units. Surprisingly, the resonance frequency can be predicted from the properties of isolated units, even in the presence of heterogeneity in the adaptation parameters. In the presence of these internally-generated chaotic fluctuations, the transmission of weak, low-frequency signals is strongly enhanced by adaptation, whereas signal transmission is not influenced by adaptation in the non-chaotic regime. Our theoretical framework can be applied to other mechanisms at the level of single nodes, such as synaptic filtering, refractoriness or spike synchronization. These results advance our understanding of the interaction between the dynamics of single units and recurrent connectivity, which is a fundamental step toward the description of biologically realistic network models in the brain, or, more generally, networks of other physical or man-made complex dynamical units

    Exact solutions to the nonlinear dynamics of learning in deep linear neural networks

    Full text link
    Despite the widespread practical success of deep learning methods, our theoretical understanding of the dynamics of learning in deep neural networks remains quite sparse. We attempt to bridge the gap between the theory and practice of deep learning by systematically analyzing learning dynamics for the restricted case of deep linear neural networks. Despite the linearity of their input-output map, such networks have nonlinear gradient descent dynamics on weights that change with the addition of each new hidden layer. We show that deep linear networks exhibit nonlinear learning phenomena similar to those seen in simulations of nonlinear networks, including long plateaus followed by rapid transitions to lower error solutions, and faster convergence from greedy unsupervised pretraining initial conditions than from random initial conditions. We provide an analytical description of these phenomena by finding new exact solutions to the nonlinear dynamics of deep learning. Our theoretical analysis also reveals the surprising finding that as the depth of a network approaches infinity, learning speed can nevertheless remain finite: for a special class of initial conditions on the weights, very deep networks incur only a finite, depth independent, delay in learning speed relative to shallow networks. We show that, under certain conditions on the training data, unsupervised pretraining can find this special class of initial conditions, while scaled random Gaussian initializations cannot. We further exhibit a new class of random orthogonal initial conditions on weights that, like unsupervised pre-training, enjoys depth independent learning times. We further show that these initial conditions also lead to faithful propagation of gradients even in deep nonlinear networks, as long as they operate in a special regime known as the edge of chaos.Comment: Submission to ICLR2014. Revised based on reviewer feedbac

    A geometric method for model reduction of biochemical networks with polynomial rate functions

    Full text link
    Model reduction of biochemical networks relies on the knowledge of slow and fast variables. We provide a geometric method, based on the Newton polytope, to identify slow variables of a biochemical network with polynomial rate functions. The gist of the method is the notion of tropical equilibration that provides approximate descriptions of slow invariant manifolds. Compared to extant numerical algorithms such as the intrinsic low dimensional manifold method, our approach is symbolic and utilizes orders of magnitude instead of precise values of the model parameters. Application of this method to a large collection of biochemical network models supports the idea that the number of dynamical variables in minimal models of cell physiology can be small, in spite of the large number of molecular regulatory actors

    A geometric method for model reduction of biochemical networks with polynomial rate functions

    No full text
    • …
    corecore