2 research outputs found

    Analysis of Brain Imaging Data for the Detection of Early Age Autism Spectrum Disorder Using Transfer Learning Approaches for Internet of Things

    Get PDF
    In recent years, advanced magnetic resonance imaging (MRI) methods including functional magnetic resonance imaging (fMRI) and structural magnetic resonance imaging (sMRI) have indicated an increase in the prevalence of neuropsychiatric disorders such as autism spectrum disorder (ASD), effects one out of six children worldwide. Data driven techniques along with medical image analysis techniques, such as computer-assisted diagnosis (CAD), benefiting from deep learning. With the use of artificial intelligence (AI) and IoT-based intelligent approaches, it would be convenient to support autistic children to adopt the new atmospheres. In this paper, we classify and represent learning tasks of the most powerful deep learning network such as convolution neural network (CNN) and transfer learning algorithm on a combination of data from autism brain imaging data exchange (ABIDE I and ABIDE II) datasets. Due to their four-dimensional nature (three spatial dimensions and one temporal dimension), the resting state-fMRI (rs-fMRI) data can be used to develop diagnostic biomarkers for brain dysfunction. ABIDE is a collaboration of global scientists, where ABIDE-I and ABIDE-II consists of 1112 rs-fMRI datasets from 573 typical control (TC) and 539 autism individuals, and 1114 rs-fMRI from 521 autism and 593 typical control individuals respectively, which were collected from 17 different sites. Our proposed optimized version of CNN achieved 81.56% accuracy. This outperforms prior conventional approaches presented only on the ABIDE I datasets

    Automatic Autism Spectrum Disorder Detection Using Artificial Intelligence Methods with MRI Neuroimaging: A Review

    Full text link
    Autism spectrum disorder (ASD) is a brain condition characterized by diverse signs and symptoms that appear in early childhood. ASD is also associated with communication deficits and repetitive behavior in affected individuals. Various ASD detection methods have been developed, including neuroimaging modalities and psychological tests. Among these methods, magnetic resonance imaging (MRI) imaging modalities are of paramount importance to physicians. Clinicians rely on MRI modalities to diagnose ASD accurately. The MRI modalities are non-invasive methods that include functional (fMRI) and structural (sMRI) neuroimaging methods. However, the process of diagnosing ASD with fMRI and sMRI for specialists is often laborious and time-consuming; therefore, several computer-aided design systems (CADS) based on artificial intelligence (AI) have been developed to assist the specialist physicians. Conventional machine learning (ML) and deep learning (DL) are the most popular schemes of AI used for diagnosing ASD. This study aims to review the automated detection of ASD using AI. We review several CADS that have been developed using ML techniques for the automated diagnosis of ASD using MRI modalities. There has been very limited work on the use of DL techniques to develop automated diagnostic models for ASD. A summary of the studies developed using DL is provided in the appendix. Then, the challenges encountered during the automated diagnosis of ASD using MRI and AI techniques are described in detail. Additionally, a graphical comparison of studies using ML and DL to diagnose ASD automatically is discussed. We conclude by suggesting future approaches to detecting ASDs using AI techniques and MRI neuroimaging
    corecore