7 research outputs found

    Evaluation of Anonymized ONS Queries

    Full text link
    Electronic Product Code (EPC) is the basis of a pervasive infrastructure for the automatic identification of objects on supply chain applications (e.g., pharmaceutical or military applications). This infrastructure relies on the use of the (1) Radio Frequency Identification (RFID) technology to tag objects in motion and (2) distributed services providing information about objects via the Internet. A lookup service, called the Object Name Service (ONS) and based on the use of the Domain Name System (DNS), can be publicly accessed by EPC applications looking for information associated with tagged objects. Privacy issues may affect corporate infrastructures based on EPC technologies if their lookup service is not properly protected. A possible solution to mitigate these issues is the use of online anonymity. We present an evaluation experiment that compares the of use of Tor (The second generation Onion Router) on a global ONS/DNS setup, with respect to benefits, limitations, and latency.Comment: 14 page

    LightPIR: Privacy-Preserving Route Discovery for Payment Channel Networks

    Full text link
    Payment channel networks are a promising approach to improve the scalability of cryptocurrencies: they allow to perform transactions in a peer-to-peer fashion, along multi-hop routes in the network, without requiring consensus on the blockchain. However, during the discovery of cost-efficient routes for the transaction, critical information may be revealed about the transacting entities. This paper initiates the study of privacy-preserving route discovery mechanisms for payment channel networks. In particular, we present LightPIR, an approach which allows a source to efficiently discover a shortest path to its destination without revealing any information about the endpoints of the transaction. The two main observations which allow for an efficient solution in LightPIR are that: (1) surprisingly, hub labelling algorithms - which were developed to preprocess "street network like" graphs so one can later efficiently compute shortest paths - also work well for the graphs underlying payment channel networks, and that (2) hub labelling algorithms can be directly combined with private information retrieval. LightPIR relies on a simple hub labeling heuristic on top of existing hub labeling algorithms which leverages the specific topological features of cryptocurrency networks to further minimize storage and bandwidth overheads. In a case study considering the Lightning network, we show that our approach is an order of magnitude more efficient compared to a privacy-preserving baseline based on using private information retrieval on a database that stores all pairs shortest paths

    PDoT: Private DNS-over-TLS with TEE Support

    Full text link
    Security and privacy of the Internet Domain Name System (DNS) have been longstanding concerns. Recently, there is a trend to protect DNS traffic using Transport Layer Security (TLS). However, at least two major issues remain: (1) how do clients authenticate DNS-over-TLS endpoints in a scalable and extensible manner; and (2) how can clients trust endpoints to behave as expected? In this paper, we propose a novel Private DNS-over-TLS (PDoT ) architecture. PDoT includes a DNS Recursive Resolver (RecRes) that operates within a Trusted Execution Environment (TEE). Using Remote Attestation, DNS clients can authenticate, and receive strong assurance of trustworthiness of PDoT RecRes. We provide an open-source proof-of-concept implementation of PDoT and use it to experimentally demonstrate that its latency and throughput match that of the popular Unbound DNS-over-TLS resolver.Comment: To appear: ACSAC 201

    Assessing the Privacy Benefits of Domain Name Encryption

    Full text link
    As Internet users have become more savvy about the potential for their Internet communication to be observed, the use of network traffic encryption technologies (e.g., HTTPS/TLS) is on the rise. However, even when encryption is enabled, users leak information about the domains they visit via DNS queries and via the Server Name Indication (SNI) extension of TLS. Two recent proposals to ameliorate this issue are DNS over HTTPS/TLS (DoH/DoT) and Encrypted SNI (ESNI). In this paper we aim to assess the privacy benefits of these proposals by considering the relationship between hostnames and IP addresses, the latter of which are still exposed. We perform DNS queries from nine vantage points around the globe to characterize this relationship. We quantify the privacy gain offered by ESNI for different hosting and CDN providers using two different metrics, the k-anonymity degree due to co-hosting and the dynamics of IP address changes. We find that 20% of the domains studied will not gain any privacy benefit since they have a one-to-one mapping between their hostname and IP address. On the other hand, 30% will gain a significant privacy benefit with a k value greater than 100, since these domains are co-hosted with more than 100 other domains. Domains whose visitors' privacy will meaningfully improve are far less popular, while for popular domains the benefit is not significant. Analyzing the dynamics of IP addresses of long-lived domains, we find that only 7.7% of them change their hosting IP addresses on a daily basis. We conclude by discussing potential approaches for website owners and hosting/CDN providers for maximizing the privacy benefits of ESNI.Comment: In Proceedings of the 15th ACM Asia Conference on Computer and Communications Security (ASIA CCS '20), October 5-9, 2020, Taipei, Taiwa
    corecore