165,465 research outputs found

    Invariant Causal Prediction for Nonlinear Models

    Full text link
    An important problem in many domains is to predict how a system will respond to interventions. This task is inherently linked to estimating the system's underlying causal structure. To this end, Invariant Causal Prediction (ICP) (Peters et al., 2016) has been proposed which learns a causal model exploiting the invariance of causal relations using data from different environments. When considering linear models, the implementation of ICP is relatively straightforward. However, the nonlinear case is more challenging due to the difficulty of performing nonparametric tests for conditional independence. In this work, we present and evaluate an array of methods for nonlinear and nonparametric versions of ICP for learning the causal parents of given target variables. We find that an approach which first fits a nonlinear model with data pooled over all environments and then tests for differences between the residual distributions across environments is quite robust across a large variety of simulation settings. We call this procedure "invariant residual distribution test". In general, we observe that the performance of all approaches is critically dependent on the true (unknown) causal structure and it becomes challenging to achieve high power if the parental set includes more than two variables. As a real-world example, we consider fertility rate modelling which is central to world population projections. We explore predicting the effect of hypothetical interventions using the accepted models from nonlinear ICP. The results reaffirm the previously observed central causal role of child mortality rates

    Mining Heterogeneous Multivariate Time-Series for Learning Meaningful Patterns: Application to Home Health Telecare

    Full text link
    For the last years, time-series mining has become a challenging issue for researchers. An important application lies in most monitoring purposes, which require analyzing large sets of time-series for learning usual patterns. Any deviation from this learned profile is then considered as an unexpected situation. Moreover, complex applications may involve the temporal study of several heterogeneous parameters. In that paper, we propose a method for mining heterogeneous multivariate time-series for learning meaningful patterns. The proposed approach allows for mixed time-series -- containing both pattern and non-pattern data -- such as for imprecise matches, outliers, stretching and global translating of patterns instances in time. We present the early results of our approach in the context of monitoring the health status of a person at home. The purpose is to build a behavioral profile of a person by analyzing the time variations of several quantitative or qualitative parameters recorded through a provision of sensors installed in the home

    Self-Similar Anisotropic Texture Analysis: the Hyperbolic Wavelet Transform Contribution

    Full text link
    Textures in images can often be well modeled using self-similar processes while they may at the same time display anisotropy. The present contribution thus aims at studying jointly selfsimilarity and anisotropy by focusing on a specific classical class of Gaussian anisotropic selfsimilar processes. It will first be shown that accurate joint estimates of the anisotropy and selfsimilarity parameters are performed by replacing the standard 2D-discrete wavelet transform by the hyperbolic wavelet transform, which permits the use of different dilation factors along the horizontal and vertical axis. Defining anisotropy requires a reference direction that needs not a priori match the horizontal and vertical axes according to which the images are digitized, this discrepancy defines a rotation angle. Second, we show that this rotation angle can be jointly estimated. Third, a non parametric bootstrap based procedure is described, that provides confidence interval in addition to the estimates themselves and enables to construct an isotropy test procedure, that can be applied to a single texture image. Fourth, the robustness and versatility of the proposed analysis is illustrated by being applied to a large variety of different isotropic and anisotropic self-similar fields. As an illustration, we show that a true anisotropy built-in self-similarity can be disentangled from an isotropic self-similarity to which an anisotropic trend has been superimposed

    Intermittent process analysis with scattering moments

    Full text link
    Scattering moments provide nonparametric models of random processes with stationary increments. They are expected values of random variables computed with a nonexpansive operator, obtained by iteratively applying wavelet transforms and modulus nonlinearities, which preserves the variance. First- and second-order scattering moments are shown to characterize intermittency and self-similarity properties of multiscale processes. Scattering moments of Poisson processes, fractional Brownian motions, L\'{e}vy processes and multifractal random walks are shown to have characteristic decay. The Generalized Method of Simulated Moments is applied to scattering moments to estimate data generating models. Numerical applications are shown on financial time-series and on energy dissipation of turbulent flows.Comment: Published in at http://dx.doi.org/10.1214/14-AOS1276 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore