9,907 research outputs found

    Node Repair for Distributed Storage Systems over Fading Channels

    Full text link
    Distributed storage systems and associated storage codes can efficiently store a large amount of data while ensuring that data is retrievable in case of node failure. The study of such systems, particularly the design of storage codes over finite fields, assumes that the physical channel through which the nodes communicate is error-free. This is not always the case, for example, in a wireless storage system. We study the probability that a subpacket is repaired incorrectly during node repair in a distributed storage system, in which the nodes communicate over an AWGN or Rayleigh fading channels. The asymptotic probability (as SNR increases) that a node is repaired incorrectly is shown to be completely determined by the repair locality of the DSS and the symbol error rate of the wireless channel. Lastly, we propose some design criteria for physical layer coding in this scenario, and use it to compute optimally rotated QAM constellations for use in wireless distributed storage systems.Comment: To appear in ISITA 201

    HFR Code: A Flexible Replication Scheme for Cloud Storage Systems

    Full text link
    Fractional repetition (FR) codes are a family of repair-efficient storage codes that provide exact and uncoded node repair at the minimum bandwidth regenerating point. The advantageous repair properties are achieved by a tailor-made two-layer encoding scheme which concatenates an outer maximum-distance-separable (MDS) code and an inner repetition code. In this paper, we generalize the application of FR codes and propose heterogeneous fractional repetition (HFR) code, which is adaptable to the scenario where the repetition degrees of coded packets are different. We provide explicit code constructions by utilizing group divisible designs, which allow the design of HFR codes over a large range of parameters. The constructed codes achieve the system storage capacity under random access repair and have multiple repair alternatives for node failures. Further, we take advantage of the systematic feature of MDS codes and present a novel design framework of HFR codes, in which storage nodes can be wisely partitioned into clusters such that data reconstruction time can be reduced when contacting nodes in the same cluster.Comment: Accepted for publication in IET Communications, Jul. 201
    • …
    corecore