238 research outputs found

    Multiple and single snapshot compressive beamforming

    Full text link
    For a sound field observed on a sensor array, compressive sensing (CS) reconstructs the direction-of-arrival (DOA) of multiple sources using a sparsity constraint. The DOA estimation is posed as an underdetermined problem by expressing the acoustic pressure at each sensor as a phase-lagged superposition of source amplitudes at all hypothetical DOAs. Regularizing with an ℓ1\ell_1-norm constraint renders the problem solvable with convex optimization, and promoting sparsity gives high-resolution DOA maps. Here, the sparse source distribution is derived using maximum a posteriori (MAP) estimates for both single and multiple snapshots. CS does not require inversion of the data covariance matrix and thus works well even for a single snapshot where it gives higher resolution than conventional beamforming. For multiple snapshots, CS outperforms conventional high-resolution methods, even with coherent arrivals and at low signal-to-noise ratio. The superior resolution of CS is demonstrated with vertical array data from the SWellEx96 experiment for coherent multi-paths.Comment: In press Journal of Acoustical Society of Americ

    Grid-free compressive beamforming

    Get PDF
    The direction-of-arrival (DOA) estimation problem involves the localization of a few sources from a limited number of observations on an array of sensors, thus it can be formulated as a sparse signal reconstruction problem and solved efficiently with compressive sensing (CS) to achieve high-resolution imaging. On a discrete angular grid, the CS reconstruction degrades due to basis mismatch when the DOAs do not coincide with the angular directions on the grid. To overcome this limitation, a continuous formulation of the DOA problem is employed and an optimization procedure is introduced, which promotes sparsity on a continuous optimization variable. The DOA estimation problem with infinitely many unknowns, i.e., source locations and amplitudes, is solved over a few optimization variables with semidefinite programming. The grid-free CS reconstruction provides high-resolution imaging even with non-uniform arrays, single-snapshot data and under noisy conditions as demonstrated on experimental towed array data.Comment: 14 pages, 8 figures, journal pape

    High-resolution imaging methods in array signal processing

    Get PDF

    Space Time MUSIC: Consistent Signal Subspace Estimation for Wide-band Sensor Arrays

    Full text link
    Wide-band Direction of Arrival (DOA) estimation with sensor arrays is an essential task in sonar, radar, acoustics, biomedical and multimedia applications. Many state of the art wide-band DOA estimators coherently process frequency binned array outputs by approximate Maximum Likelihood, Weighted Subspace Fitting or focusing techniques. This paper shows that bin signals obtained by filter-bank approaches do not obey the finite rank narrow-band array model, because spectral leakage and the change of the array response with frequency within the bin create \emph{ghost sources} dependent on the particular realization of the source process. Therefore, existing DOA estimators based on binning cannot claim consistency even with the perfect knowledge of the array response. In this work, a more realistic array model with a finite length of the sensor impulse responses is assumed, which still has finite rank under a space-time formulation. It is shown that signal subspaces at arbitrary frequencies can be consistently recovered under mild conditions by applying MUSIC-type (ST-MUSIC) estimators to the dominant eigenvectors of the wide-band space-time sensor cross-correlation matrix. A novel Maximum Likelihood based ST-MUSIC subspace estimate is developed in order to recover consistency. The number of sources active at each frequency are estimated by Information Theoretic Criteria. The sample ST-MUSIC subspaces can be fed to any subspace fitting DOA estimator at single or multiple frequencies. Simulations confirm that the new technique clearly outperforms binning approaches at sufficiently high signal to noise ratio, when model mismatches exceed the noise floor.Comment: 15 pages, 10 figures. Accepted in a revised form by the IEEE Trans. on Signal Processing on 12 February 1918. @IEEE201

    New Approaches for Two-Dimensional DOA Estimation of Coherent and Noncircular Signals with Acoustic Vector-sensor Array

    Get PDF
    This thesis is mainly concerned with the two-dimensional direction of arrival (2D-DOA) estimation using acoustic vector-sensor array for coherent signals and noncircular signals. As for coherent signals, the thesis proposes two algorithms, namely, a 2D-DOA estimation algorithm with acoustic vector-sensor array using a single snapshot, and an improved 2D-DOA estimation algorithm of coherent signals. In the first algorithm, only a single snapshot is employed to estimate the 2D-DOA, and the second is an improved algorithm based on the method of Palanisamy et al. Compared to the existing algorithm, the proposed algorithm has the following advantages: (1) lower computational complexity, (2) better estimation performance, and (3) acquiring automatically-paired 2D-DOA estimates. As for noncircular signals, we propose real-valued space PM and ESPRIT algorithms for 2D-DOA estimation using arbitrarily spaced acoustic vector-sensor array. By exploiting the noncircularity of incoming signals to increase the amount of effective data, the proposed algorithms can provide a better 2D-DOA estimation performance with fewer snapshots, which means a relatively lower sample rate can be used in practical implementations. Compared with the traditional PM and ESPRIT, the proposed algorithms provide better estimation performance while having similar computational complexity. Furthermore, the proposed algorithms are suitable for arbitrary arrays and yield paired azimuth and elevation angle estimates without requiring extra computationally expensive pairing operations

    Block-sparse beamforming for spatially extended sources in a Bayesian formulation

    Get PDF
    Direction-of-arrival (DOA) estimation refers to the localization of sound sources on an angular grid from noisy measurements of the associated wavefield with an array of sensors. For accurate localization, the number of angular look-directions is much larger than the number of sensors, hence, the problem is underdetermined and requires regularization. Traditional methods use an L2-norm regularizer, which promotes minimum-power (smooth) solutions, while regularizing with L1-norm promotes sparsity. Sparse signal reconstruction improves the resolution in DOA estimation in the presence of a few point sources, but cannot capture spatially extended sources. The DOA estimation problem is formulated in a Bayesian framework where regularization is imposed through prior information on the source spatial distribution which is then reconstructed as the maximum a posteriori estimate. A composite prior is introduced, which simultaneously promotes a piecewise constant profile and sparsity in the solution. Simulations and experimental measurements show that this choice of regularization provides high-resolution DOA estimation in a general framework, i.e., in the presence of spatially extended sources

    Statistical Nested Sensor Array Signal Processing

    Get PDF
    Source number detection and direction-of-arrival (DOA) estimation are two major applications of sensor arrays. Both applications are often confined to the use of uniform linear arrays (ULAs), which is expensive and difficult to yield wide aperture. Besides, a ULA with N scalar sensors can resolve at most N − 1 sources. On the other hand, a systematic approach was recently proposed to achieve O(N 2 ) degrees of freedom (DOFs) using O(N) sensors based on a nested array, which is obtained by combining two or more ULAs with successively increased spacing. This dissertation will focus on a fundamental study of statistical signal processing of nested arrays. Five important topics are discussed, extending the existing nested-array strategies to more practical scenarios. Novel signal models and algorithms are proposed. First, based on the linear nested array, we consider the problem for wideband Gaussian sources. To employ the nested array to the wideband case, we propose effective strategies to apply nested-array processing to each frequency component, and combine all the spectral information of various frequencies to conduct the detection and estimation. We then consider the practical scenario with distributed sources, which considers the spreading phenomenon of sources. Next, we investigate the self-calibration problem for perturbed nested arrays, for which existing works require certain modeling assumptions, for example, an exactly known array geometry, including the sensor gain and phase. We propose corresponding robust algorithms to estimate both the model errors and the DOAs. The partial Toeplitz structure of the covariance matrix is employed to estimate the gain errors, and the sparse total least squares is used to deal with the phase error issue. We further propose a new class of nested vector-sensor arrays which is capable of significantly increasing the DOFs. This is not a simple extension of the nested scalar-sensor array. Both the signal model and the signal processing strategies are developed in the multidimensional sense. Based on the analytical results, we consider two main applications: electromagnetic (EM) vector sensors and acoustic vector sensors. Last but not least, in order to make full use of the available limited valuable data, we propose a novel strategy, which is inspired by the jackknifing resampling method. Exploiting numerous iterations of subsets of the whole data set, this strategy greatly improves the results of the existing source number detection and DOA estimation methods
    • 

    corecore