5,648 research outputs found

    Deterministic Constructions of Binary Measurement Matrices from Finite Geometry

    Full text link
    Deterministic constructions of measurement matrices in compressed sensing (CS) are considered in this paper. The constructions are inspired by the recent discovery of Dimakis, Smarandache and Vontobel which says that parity-check matrices of good low-density parity-check (LDPC) codes can be used as {provably} good measurement matrices for compressed sensing under â„“1\ell_1-minimization. The performance of the proposed binary measurement matrices is mainly theoretically analyzed with the help of the analyzing methods and results from (finite geometry) LDPC codes. Particularly, several lower bounds of the spark (i.e., the smallest number of columns that are linearly dependent, which totally characterizes the recovery performance of â„“0\ell_0-minimization) of general binary matrices and finite geometry matrices are obtained and they improve the previously known results in most cases. Simulation results show that the proposed matrices perform comparably to, sometimes even better than, the corresponding Gaussian random matrices. Moreover, the proposed matrices are sparse, binary, and most of them have cyclic or quasi-cyclic structure, which will make the hardware realization convenient and easy.Comment: 12 pages, 11 figure

    Parsing a sequence of qubits

    Full text link
    We develop a theoretical framework for frame synchronization, also known as block synchronization, in the quantum domain which makes it possible to attach classical and quantum metadata to quantum information over a noisy channel even when the information source and sink are frame-wise asynchronous. This eliminates the need of frame synchronization at the hardware level and allows for parsing qubit sequences during quantum information processing. Our framework exploits binary constant-weight codes that are self-synchronizing. Possible applications may include asynchronous quantum communication such as a self-synchronizing quantum network where one can hop into the channel at any time, catch the next coming quantum information with a label indicating the sender, and reply by routing her quantum information with control qubits for quantum switches all without assuming prior frame synchronization between users.Comment: 11 pages, 2 figures, 1 table. Final accepted version for publication in the IEEE Transactions on Information Theor

    Half-BPS M2-brane orbifolds

    Get PDF
    Smooth Freund-Rubin backgrounds of eleven-dimensional supergravity of the form AdS_4 x X^7 and preserving at least half of the supersymmetry have been recently classified. Requiring that amount of supersymmetry forces X to be a spherical space form, whence isometric to the quotient of the round 7-sphere by a freely-acting finite subgroup of SO(8). The classification is given in terms of ADE subgroups of the quaternions embedded in SO(8) as the graph of an automorphism. In this paper we extend this classification by dropping the requirement that the background be smooth, so that X is now allowed to be an orbifold of the round 7-sphere. We find that if the background preserves more than half of the supersymmetry, then it is automatically smooth in accordance with the homogeneity conjecture, but that there are many half-BPS orbifolds, most of them new. The classification is now given in terms of pairs of ADE subgroups of quaternions fibred over the same finite group. We classify such subgroups and then describe the resulting orbifolds in terms of iterated quotients. In most cases the resulting orbifold can be described as a sequence of cyclic quotients.Comment: 51 pages; v3: substantial revision (20% longer): we had missed some cases, but the paper now includes a check of our results via comparison with extant classification of finite subgroups of SO(4

    A Short Survey of Noncommutative Geometry

    Full text link
    We give a survey of selected topics in noncommutative geometry, with some emphasis on those directly related to physics, including our recent work with Dirk Kreimer on renormalization and the Riemann-Hilbert problem. We discuss at length two issues. The first is the relevance of the paradigm of geometric space, based on spectral considerations, which is central in the theory. As a simple illustration of the spectral formulation of geometry in the ordinary commutative case, we give a polynomial equation for geometries on the four dimensional sphere with fixed volume. The equation involves an idempotent e, playing the role of the instanton, and the Dirac operator D. It expresses the gamma five matrix as the pairing between the operator theoretic chern characters of e and D. It is of degree five in the idempotent and four in the Dirac operator which only appears through its commutant with the idempotent. It determines both the sphere and all its metrics with fixed volume form. We also show using the noncommutative analogue of the Polyakov action, how to obtain the noncommutative metric (in spectral form) on the noncommutative tori from the formal naive metric. We conclude on some questions related to string theory.Comment: Invited lecture for JMP 2000, 45

    Locally conformal parallel G2G_2 and Spin(7)Spin(7) manifolds

    Full text link
    We characterize compact locally conformal parallel G2G_2 (respectively, Spin(7)Spin(7)) manifolds as fiber bundles over S1S^1 with compact nearly K\"ahler (respectively, compact nearly parallel G2G_2) fiber. A more specific characterization is provided when the local parallel structures are flat.Comment: References update

    On Guichard's nets and Cyclic systems

    Full text link
    In the first part, we give a self contained introduction to the theory of cyclic systems in n-dimensional space which can be considered as immersions into certain Grassmannians. We show how the (metric) geometries on spaces of constant curvature arise as subgeometries of Moebius geometry which provides a slightly new viewpoint. In the second part we characterize Guichard nets which are given by cyclic systems as being Moebius equivalent to 1-parameter families of linear Weingarten surfaces. This provides a new method to study families of parallel Weingarten surfaces in space forms. In particular, analogs of Bonnet's theorem on parallel constant mean curvature surfaces can be easily obtained in this setting.Comment: 25 pages, plain Te

    A Possible Approach to Inclusion of Space and Time in Frame Fields of Quantum Representations of Real and Complex Numbers

    Get PDF
    This work is based on the field of reference frames based on quantum representations of real and complex numbers described in other work. Here frame domains are expanded to include space and time lattices. Strings of qukits are described as hybrid systems as they are both mathematical and physical systems. As mathematical systems they represent numbers. As physical systems in each frame the strings have a discrete Schrodinger dynamics on the lattices. The frame field has an iterative structure such that the contents of a stage j frame have images in a stage j-1 (parent) frame. A discussion of parent frame images includes the proposal that points of stage j frame lattices have images as hybrid systems in parent frames. The resulting association of energy with images of lattice point locations, as hybrid systems states, is discussed. Representations and images of other physical systems in the different frames are also described.Comment: Paper has been greatly revised and shortened to 26 pages, 2 figures, per referees comment
    • …
    corecore