52 research outputs found

    Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data

    Get PDF
    We consider initial/boundary value problems for the subdiffusion and diffusion-wave equations involving a Caputo fractional derivative in time. We develop two fully discrete schemes based on the piecewise linear Galerkin finite element method in space and convolution quadrature in time with the generating function given by the backward Euler method/second-order backward difference method, and establish error estimates optimal with respect to the regularity of problem data. These two schemes are first- and second-order accurate in time for both smooth and nonsmooth data. Extensive numerical experiments for two-dimensional problems confirm the convergence analysis and robustness of the schemes with respect to data regularity. Read More: http://epubs.siam.org/doi/10.1137/14097956

    Correction of high-order BDF convolution quadrature for fractional evolution equations

    Get PDF
    We develop proper correction formulas at the starting k1k-1 steps to restore the desired kthk^{\rm th}-order convergence rate of the kk-step BDF convolution quadrature for discretizing evolution equations involving a fractional-order derivative in time. The desired kthk^{\rm th}-order convergence rate can be achieved even if the source term is not compatible with the initial data, which is allowed to be nonsmooth. We provide complete error estimates for the subdiffusion case α(0,1)\alpha\in (0,1), and sketch the proof for the diffusion-wave case α(1,2)\alpha\in(1,2). Extensive numerical examples are provided to illustrate the effectiveness of the proposed scheme.Comment: 22 pages, 3 figure
    corecore