142,123 research outputs found

    The Random Feature Model for Input-Output Maps between Banach Spaces

    Get PDF
    Well known to the machine learning community, the random feature model, originally introduced by Rahimi and Recht in 2008, is a parametric approximation to kernel interpolation or regression methods. It is typically used to approximate functions mapping a finite-dimensional input space to the real line. In this paper, we instead propose a methodology for use of the random feature model as a data-driven surrogate for operators that map an input Banach space to an output Banach space. Although the methodology is quite general, we consider operators defined by partial differential equations (PDEs); here, the inputs and outputs are themselves functions, with the input parameters being functions required to specify the problem, such as initial data or coefficients, and the outputs being solutions of the problem. Upon discretization, the model inherits several desirable attributes from this infinite-dimensional, function space viewpoint, including mesh-invariant approximation error with respect to the true PDE solution map and the capability to be trained at one mesh resolution and then deployed at different mesh resolutions. We view the random feature model as a non-intrusive data-driven emulator, provide a mathematical framework for its interpretation, and demonstrate its ability to efficiently and accurately approximate the nonlinear parameter-to-solution maps of two prototypical PDEs arising in physical science and engineering applications: viscous Burgers' equation and a variable coefficient elliptic equation

    The Random Feature Model for Input-Output Maps between Banach Spaces

    Get PDF
    Well known to the machine learning community, the random feature model is a parametric approximation to kernel interpolation or regression methods. It is typically used to approximate functions mapping a finite-dimensional input space to the real line. In this paper, we instead propose a methodology for use of the random feature model as a data-driven surrogate for operators that map an input Banach space to an output Banach space. Although the methodology is quite general, we consider operators defined by partial differential equations (PDEs); here, the inputs and outputs are themselves functions, with the input parameters being functions required to specify the problem, such as initial data or coefficients, and the outputs being solutions of the problem. Upon discretization, the model inherits several desirable attributes from this infinite-dimensional viewpoint, including mesh-invariant approximation error with respect to the true PDE solution map and the capability to be trained at one mesh resolution and then deployed at different mesh resolutions. We view the random feature model as a non-intrusive data-driven emulator, provide a mathematical framework for its interpretation, and demonstrate its ability to efficiently and accurately approximate the nonlinear parameter-to-solution maps of two prototypical PDEs arising in physical science and engineering applications: viscous Burgers' equation and a variable coefficient elliptic equation.Comment: To appear in SIAM Journal on Scientific Computing; 32 pages, 9 figure

    Stochastic collocation on unstructured multivariate meshes

    Full text link
    Collocation has become a standard tool for approximation of parameterized systems in the uncertainty quantification (UQ) community. Techniques for least-squares regularization, compressive sampling recovery, and interpolatory reconstruction are becoming standard tools used in a variety of applications. Selection of a collocation mesh is frequently a challenge, but methods that construct geometrically "unstructured" collocation meshes have shown great potential due to attractive theoretical properties and direct, simple generation and implementation. We investigate properties of these meshes, presenting stability and accuracy results that can be used as guides for generating stochastic collocation grids in multiple dimensions.Comment: 29 pages, 6 figure
    • …
    corecore