74,870 research outputs found

    Validation of Twitter opinion trends with national polling aggregates: Hillary Clinton vs Donald Trump

    Full text link
    Measuring and forecasting opinion trends from real-time social media is a long-standing goal of big-data analytics. Despite its importance, there has been no conclusive scientific evidence so far that social media activity can capture the opinion of the general population. Here we develop a method to infer the opinion of Twitter users regarding the candidates of the 2016 US Presidential Election by using a combination of statistical physics of complex networks and machine learning based on hashtags co-occurrence to develop an in-domain training set approaching 1 million tweets. We investigate the social networks formed by the interactions among millions of Twitter users and infer the support of each user to the presidential candidates. The resulting Twitter trends follow the New York Times National Polling Average, which represents an aggregate of hundreds of independent traditional polls, with remarkable accuracy. Moreover, the Twitter opinion trend precedes the aggregated NYT polls by 10 days, showing that Twitter can be an early signal of global opinion trends. Our analytics unleash the power of Twitter to uncover social trends from elections, brands to political movements, and at a fraction of the cost of national polls

    Multi-scale Population and Mobility Estimation with Geo-tagged Tweets

    Full text link
    Recent outbreaks of Ebola and Dengue viruses have again elevated the significance of the capability to quickly predict disease spread in an emergent situation. However, existing approaches usually rely heavily on the time-consuming census processes, or the privacy-sensitive call logs, leading to their unresponsive nature when facing the abruptly changing dynamics in the event of an outbreak. In this paper we study the feasibility of using large-scale Twitter data as a proxy of human mobility to model and predict disease spread. We report that for Australia, Twitter users' distribution correlates well the census-based population distribution, and that the Twitter users' travel patterns appear to loosely follow the gravity law at multiple scales of geographic distances, i.e. national level, state level and metropolitan level. The radiation model is also evaluated on this dataset though it has shown inferior fitness as a result of Australia's sparse population and large landmass. The outcomes of the study form the cornerstones for future work towards a model-based, responsive prediction method from Twitter data for disease spread.Comment: 1st International Workshop on Big Data Analytics for Biosecurity (BioBAD2015), 4 page

    Determine the User Country of a Tweet

    Get PDF
    In the widely used message platform Twitter, about 2% of the tweets contains the geographical location through exact GPS coordinates (latitude and longitude). Knowing the location of a tweet is useful for many data analytics questions. This research is looking at the determination of a location for tweets that do not contain GPS coordinates. An accuracy of 82% was achieved using a Naive Bayes model trained on features such as the users' timezone, the user's language, and the parsed user location. The classifier performs well on active Twitter countries such as the Netherlands and United Kingdom. An analysis of errors made by the classifier shows that mistakes were made due to limited information and shared properties between countries such as shared timezone. A feature analysis was performed in order to see the effect of different features. The features timezone and parsed user location were the most informative features.Comment: CTIT Technical Report, University of Twent

    Towards the cloudification of the social networks analytics

    Get PDF
    In the last years, with the increase of the available data from social networks and the rise of big data technologies, social data has emerged as one of the most profitable market for companies to increase their benefits. Besides, social computation scientists see such data as a vast ocean of information to study modern human societies. Nowadays, enterprises and researchers are developing their own mining tools in house, or they are outsourcing their social media mining needs to specialised companies with its consequent economical cost. In this paper, we present the first cloud computing service to facilitate the deployment of social media analytics applications to allow data practitioners to use social mining tools as a service. The main advantage of this service is the possibility to run different queries at the same time and combine their results in real time. Additionally, we also introduce twearch, a prototype to develop twitter mining algorithms as services in the cloud.Peer ReviewedPostprint (author’s final draft

    An overview study of twitter in the UK local government

    Get PDF
    Copyright @ 2012 Brunel UniversityMicroblogging applications are becoming a momentous element of the public sector social media agenda. The potential of Twitter to update the public with frequent, concise and real-time content has motivated many pubic authorities to create their accounts, thus generating an interesting topic for research. This paper seeks to make an empirical and methodological contribution to this new body of knowledge by presenting an overview study of general Twitter accounts maintained by UK local government authorities. Over 296,000 tweets were collected from the 187officially listed local government accounts. The analysis was conducted in two stages: an examination of the Twitter networks developed by the accounts was followed by a structural analysis of the tweets. The combination of online research and social media analytics techniques enabled us to reach important conclusions about the use of Twitter by those authorities. The findings indicate high level of maturity of Twitter in the UK local government and point to several directions for further increasing the impact and visibility of those accounts within a social media strategy

    Robust Image Sentiment Analysis Using Progressively Trained and Domain Transferred Deep Networks

    Full text link
    Sentiment analysis of online user generated content is important for many social media analytics tasks. Researchers have largely relied on textual sentiment analysis to develop systems to predict political elections, measure economic indicators, and so on. Recently, social media users are increasingly using images and videos to express their opinions and share their experiences. Sentiment analysis of such large scale visual content can help better extract user sentiments toward events or topics, such as those in image tweets, so that prediction of sentiment from visual content is complementary to textual sentiment analysis. Motivated by the needs in leveraging large scale yet noisy training data to solve the extremely challenging problem of image sentiment analysis, we employ Convolutional Neural Networks (CNN). We first design a suitable CNN architecture for image sentiment analysis. We obtain half a million training samples by using a baseline sentiment algorithm to label Flickr images. To make use of such noisy machine labeled data, we employ a progressive strategy to fine-tune the deep network. Furthermore, we improve the performance on Twitter images by inducing domain transfer with a small number of manually labeled Twitter images. We have conducted extensive experiments on manually labeled Twitter images. The results show that the proposed CNN can achieve better performance in image sentiment analysis than competing algorithms.Comment: 9 pages, 5 figures, AAAI 201
    corecore