3 research outputs found

    Literature Review on Big Data Analytics Methods

    Get PDF
    Companies and industries are faced with a huge amount of raw data, which have information and knowledge in their hidden layer. Also, the format, size, variety, and velocity of generated data bring complexity for industries to apply them in an efficient and effective way. So, complexity in data analysis and interpretation incline organizations to deploy advanced tools and techniques to overcome the difficulties of managing raw data. Big data analytics is the advanced method that has the capability for managing data. It deploys machine learning techniques and deep learning methods to benefit from gathered data. In this research, the methods of both ML and DL have been discussed, and an ML/DL deployment model for IOT data has been proposed

    Intelligent classification algorithms in enhancing the performance of support vector machine

    Get PDF
    Performing feature subset and tuning support vector machine (SVM) parameter processes in parallel with the aim to increase the classification accuracy is the current research direction in SVM. Common methods associated in tuning SVM parameters will discretize the continuous value of these parameters which will result in low classification performance. This paper presents two intelligent algorithms that hybridized between ant colony optimization (ACO) and SVM for tuning SVM parameters and selecting feature subset without having to discretize the continuous values. This can be achieved by simultaneously executing the selection of feature subset and tuning SVM parameters simultaneously. The algorithms are called ACOMVSVM and IACOMV-SVM. The difference between the algorithms is the size of the solution archive. The size of the archive in ACOMV is fixed while in IACOMV, the size of solution archive increases as the optimization procedure progress. Eight benchmark datasets from UCI were used in the experiments to validate the performance of the proposed algorithms. Experimental results obtained from the proposed algorithms are better when compared with other approaches in terms of classification accuracy. The average classification accuracies for the proposed ACOMV–SVM and IACOMV-SVM algorithms are 97.28 and 97.91 respectively. The work in this paper also contributes to a new direction for ACO that can deal with mixed variable ACO
    corecore