126,909 research outputs found
On Halting Process of Quantum Turing Machine
We prove that there is no algorithm to tell whether an arbitrarily
constructed Quantum Turing Machine has same time steps for different branches
of computation. We, hence, can not avoid the notion of halting to be
probabilistic in Quantum Turing Machine. Our result suggests that halting
scheme of Quantum Turing Machine and quantum complexity theory based upon the
existing halting scheme sholud be reexamined.Comment: 2 page
An Intensional Concurrent Faithful Encoding of Turing Machines
The benchmark for computation is typically given as Turing computability; the
ability for a computation to be performed by a Turing Machine. Many languages
exploit (indirect) encodings of Turing Machines to demonstrate their ability to
support arbitrary computation. However, these encodings are usually by
simulating the entire Turing Machine within the language, or by encoding a
language that does an encoding or simulation itself. This second category is
typical for process calculi that show an encoding of lambda-calculus (often
with restrictions) that in turn simulates a Turing Machine. Such approaches
lead to indirect encodings of Turing Machines that are complex, unclear, and
only weakly equivalent after computation. This paper presents an approach to
encoding Turing Machines into intensional process calculi that is faithful,
reduction preserving, and structurally equivalent. The encoding is demonstrated
in a simple asymmetric concurrent pattern calculus before generalised to
simplify infinite terms, and to show encodings into Concurrent Pattern Calculus
and Psi Calculi.Comment: In Proceedings ICE 2014, arXiv:1410.701
Verifying Time Complexity of Deterministic Turing Machines
We show that, for all reasonable functions , we can
algorithmically verify whether a given one-tape Turing machine runs in time at
most . This is a tight bound on the order of growth for the function
because we prove that, for and , there
exists no algorithm that would verify whether a given one-tape Turing machine
runs in time at most .
We give results also for the case of multi-tape Turing machines. We show that
we can verify whether a given multi-tape Turing machine runs in time at most
iff for some .
We prove a very general undecidability result stating that, for any class of
functions that contains arbitrary large constants, we cannot
verify whether a given Turing machine runs in time for some
. In particular, we cannot verify whether a Turing machine
runs in constant, polynomial or exponential time.Comment: 18 pages, 1 figur
- …
