2,064 research outputs found

    A note on first-order spectra with binary relations

    Full text link
    The spectrum of a first-order sentence is the set of the cardinalities of its finite models. In this paper, we consider the spectra of sentences over binary relations that use at least three variables. We show that for every such sentence Φ\Phi, there is a sentence Φ′\Phi' that uses the same number of variables, but only one symmetric binary relation, such that its spectrum is linearly proportional to the spectrum of Φ\Phi. Moreover, the models of Φ′\Phi' are all bipartite graphs. As a corollary, we obtain that to settle Asser's conjecture, i.e., whether the class of spectra is closed under complement, it is sufficient to consider only sentences using only three variables whose models are restricted to undirected bipartite graphs

    Descriptive Complexity of Deterministic Polylogarithmic Time and Space

    Full text link
    We propose logical characterizations of problems solvable in deterministic polylogarithmic time (PolylogTime) and polylogarithmic space (PolylogSpace). We introduce a novel two-sorted logic that separates the elements of the input domain from the bit positions needed to address these elements. We prove that the inflationary and partial fixed point vartiants of this logic capture PolylogTime and PolylogSpace, respectively. In the course of proving that our logic indeed captures PolylogTime on finite ordered structures, we introduce a variant of random-access Turing machines that can access the relations and functions of a structure directly. We investigate whether an explicit predicate for the ordering of the domain is needed in our PolylogTime logic. Finally, we present the open problem of finding an exact characterization of order-invariant queries in PolylogTime.Comment: Submitted to the Journal of Computer and System Science

    Universal First-Order Logic is Superfluous for NL, P, NP and coNP

    Full text link
    In this work we continue the syntactic study of completeness that began with the works of Immerman and Medina. In particular, we take a conjecture raised by Medina in his dissertation that says if a conjunction of a second-order and a first-order sentences defines an NP-complete problems via fops, then it must be the case that the second-order conjoint alone also defines a NP-complete problem. Although this claim looks very plausible and intuitive, currently we cannot provide a definite answer for it. However, we can solve in the affirmative a weaker claim that says that all ``consistent'' universal first-order sentences can be safely eliminated without the fear of losing completeness. Our methods are quite general and can be applied to complexity classes other than NP (in this paper: to NLSPACE, PTIME, and coNP), provided the class has a complete problem satisfying a certain combinatorial property

    Resource Bounded Unprovability of Computational Lower Bounds

    Full text link
    This paper introduces new notions of asymptotic proofs, PT(polynomial-time)-extensions, PTM(polynomial-time Turing machine)-omega-consistency, etc. on formal theories of arithmetic including PA (Peano Arithmetic). This paper shows that P not= NP (more generally, any super-polynomial-time lower bound in PSPACE) is unprovable in a PTM-omega-consistent theory T, where T is a consistent PT-extension of PA. This result gives a unified view to the existing two major negative results on proving P not= NP, Natural Proofs and relativizable proofs, through the two manners of characterization of PTM-omega-consistency. We also show that the PTM-omega-consistency of T cannot be proven in any PTM-omega-consistent theory S, where S is a consistent PT-extension of T.Comment: 78 page

    Fixed-parameter tractability, definability, and model checking

    Full text link
    In this article, we study parameterized complexity theory from the perspective of logic, or more specifically, descriptive complexity theory. We propose to consider parameterized model-checking problems for various fragments of first-order logic as generic parameterized problems and show how this approach can be useful in studying both fixed-parameter tractability and intractability. For example, we establish the equivalence between the model-checking for existential first-order logic, the homomorphism problem for relational structures, and the substructure isomorphism problem. Our main tractability result shows that model-checking for first-order formulas is fixed-parameter tractable when restricted to a class of input structures with an excluded minor. On the intractability side, for every t >= 0 we prove an equivalence between model-checking for first-order formulas with t quantifier alternations and the parameterized halting problem for alternating Turing machines with t alternations. We discuss the close connection between this alternation hierarchy and Downey and Fellows' W-hierarchy. On a more abstract level, we consider two forms of definability, called Fagin definability and slicewise definability, that are appropriate for describing parameterized problems. We give a characterization of the class FPT of all fixed-parameter tractable problems in terms of slicewise definability in finite variable least fixed-point logic, which is reminiscent of the Immerman-Vardi Theorem characterizing the class PTIME in terms of definability in least fixed-point logic.Comment: To appear in SIAM Journal on Computin

    The prospects for mathematical logic in the twenty-first century

    Get PDF
    The four authors present their speculations about the future developments of mathematical logic in the twenty-first century. The areas of recursion theory, proof theory and logic for computer science, model theory, and set theory are discussed independently.Comment: Association for Symbolic Logi
    • …
    corecore