378 research outputs found

    Estimation and detection techniques for doubly-selective channels in wireless communications

    Get PDF
    A fundamental problem in communications is the estimation of the channel. The signal transmitted through a communications channel undergoes distortions so that it is often received in an unrecognizable form at the receiver. The receiver must expend significant signal processing effort in order to be able to decode the transmit signal from this received signal. This signal processing requires knowledge of how the channel distorts the transmit signal, i.e. channel knowledge. To maintain a reliable link, the channel must be estimated and tracked by the receiver. The estimation of the channel at the receiver often proceeds by transmission of a signal called the 'pilot' which is known a priori to the receiver. The receiver forms its estimate of the transmitted signal based on how this known signal is distorted by the channel, i.e. it estimates the channel from the received signal and the pilot. This design of the pilot is a function of the modulation, the type of training and the channel. [Continues.

    A low-complexity iterative channel estimation and detection technique for doubly selective channels

    Get PDF
    In this paper, we propose a low-complexity iterative joint channel estimation, detection and decoding technique for doubly selective channels. The key is a segment-by-segment frequency domain equalization (FDE) strategy under the assumption that channel is approximately static within a short segment. Guard gaps (for cyclic prefixing or zero padding) are not required between adjacent segments, which avoids the power and spectral overheads due to the use of cyclic prefix (CP) in the conventional FDE technique. A low-complexity bi-directional channel estimation algorithm is also developed to exploit correlation information of time-varying channels. Simulation results are provided to demonstrate the efficiency of the proposed algorithms. © 2008 IEEE

    Linear MMSE-Optimal Turbo Equalization Using Context Trees

    Get PDF
    Formulations of the turbo equalization approach to iterative equalization and decoding vary greatly when channel knowledge is either partially or completely unknown. Maximum aposteriori probability (MAP) and minimum mean square error (MMSE) approaches leverage channel knowledge to make explicit use of soft information (priors over the transmitted data bits) in a manner that is distinctly nonlinear, appearing either in a trellis formulation (MAP) or inside an inverted matrix (MMSE). To date, nearly all adaptive turbo equalization methods either estimate the channel or use a direct adaptation equalizer in which estimates of the transmitted data are formed from an expressly linear function of the received data and soft information, with this latter formulation being most common. We study a class of direct adaptation turbo equalizers that are both adaptive and nonlinear functions of the soft information from the decoder. We introduce piecewise linear models based on context trees that can adaptively approximate the nonlinear dependence of the equalizer on the soft information such that it can choose both the partition regions as well as the locally linear equalizer coefficients in each region independently, with computational complexity that remains of the order of a traditional direct adaptive linear equalizer. This approach is guaranteed to asymptotically achieve the performance of the best piecewise linear equalizer and we quantify the MSE performance of the resulting algorithm and the convergence of its MSE to that of the linear minimum MSE estimator as the depth of the context tree and the data length increase.Comment: Submitted to the IEEE Transactions on Signal Processin

    Variational Inference-based Joint Interference Mitigation and OFDM Equalization Under High Mobility

    Get PDF
    In OFDM-based spectrum sharing networks, due to inefficient coordination or imperfect spectrum sensing, the signals from femtocells or secondary users appear as interference in a subset of subcarriers of the primary systems. Together with the inter-carrier interference (ICI) introduced by high mobility, equalizing one subcarrier now depends not only on whether interference exists, but also the neighboring subcarrier data. In this letter, we propose a novel approach to iteratively learn the statistics of noise plus interference across different subcarriers, and refine the soft data estimates of each subcarrier based on the variational inference. Simulation results show that the pro- posed method avoids the error floor effect, which is exhibited by existing algorithms without considering interference mitigation, and performs close to the ideal case with perfect ICI cancelation and knowledge of noise plus interference powers for optimal maximum a posteriori probability (MAP) equalizer.published_or_final_versio

    Factor graph based detection approach for high-mobility OFDM systems with large FFT modes

    Get PDF
    In this article, a novel detector design is proposed for orthogonal frequency division multiplexing (OFDM) systems over frequency selective and time varying channels. Namely, we focus on systems with large OFDM symbol lengths where design and complexity constraints have to be taken into account and many of the existing ICI reduction techniques can not be applied. We propose a factor graph (FG) based approach for maximum a posteriori (MAP) symbol detection which exploits the frequency diversity introduced by the ICI in the OFDM symbol. The proposed algorithm provides high diversity orders allowing to outperform the free-ICI performance in high-mobility scenarios with an inherent parallel structure suitable for large OFDM block sizes. The performance of the mentioned near-optimal detection strategy is analyzed over a general bit-interleaved coded modulation (BICM) system applying low-density parity-check (LDPC) codes. The inclusion of pilot symbols is also considered in order to analyze how they assist the detection process

    Low-complexity iterative method of equalization for single carrier with cyclic prefix in doubly selective channels

    Get PDF
    Orthogonal frequency division multiplexing (OFDM)requires an expensive linear amplifier at the transmitter due to its high peak-to-average power ratio (PAPR). Single carrier with cyclic prefix (SC-CP) is a closely related transmission scheme that possesses most of the benefits ofOFDMbut does not have the PAPR problem. Although in a multipath environment, SC-CP is very robust to frequency-selective fading, it is sensitive to the time-selective fading characteristics of the wireless channel that disturbs the orthogonality of the channel matrix (CM) and increases the computational complexity of the receiver. In this paper, we propose a time-domain low-complexity iterative algorithm to compensate for the effects of time selectivity of the channel that exploits the sparsity present in the channel convolution matrix. Simulation results show the superior performance of the proposed algorithm over the standard linear minimum mean-square error (L-MMSE) equalizer for SC-CP
    corecore