205,304 research outputs found

    Spatial effects of Fano resonance in local tunneling conductivity in vicinity of impurity on semiconductor surface

    Full text link
    We present the results of local tunneling conductivity spatial distribution detailed theoretical investigations in vicinity of impurity atom for a wide range of applied bias voltage. We observed Fano resonance in tunneling conductivity resulting from interference between resonant tunneling channel through impurity energy level and direct tunneling channel between the tunneling contact leads. We have found that interference between tunneling channels strongly modifies form of tunneling conductivity measured by the scanning tunneling microscopy/spectroscopy (STM/STS) depending on the distance value from the impurity.Comment: 4 pages, 3 figure

    Rapid Tunneling and Percolation in the Landscape

    Full text link
    Motivated by the possibility of a string landscape, we reexamine tunneling of a scalar field across single/multiple barriers. Recent investigations have suggested modifications to the usual picture of false vacuum decay that lead to efficient and rapid tunneling in the landscape when certain conditions are met. This can be due to stringy effects (e.g. tunneling via the DBI action), or by effects arising due to the presence of multiple vacua (e.g. resonance tunneling). In this paper we discuss both DBI tunneling and resonance tunneling. We provide a QFT treatment of resonance tunneling using the Schr\"odinger functional approach. We also show how DBI tunneling for supercritical barriers can naturally lead to conditions suitable for resonance tunneling. We argue using basic ideas from percolation theory that tunneling can be rapid in a landscape where a typical vacuum has multiple decay channels and discuss various cosmological implications. This rapidity vacuum decay can happen even if there are no resonance/DBI tunneling enhancements, solely due to the presence of a large number of decay channels. Finally, we consider various ways of circumventing a recent no-go theorem for resonance tunneling in quantum field theory.Comment: 47 pages, 16 figures. Acknowledgements adde

    Universal tunneling time for all fields

    Full text link
    Tunneling is an important physical process. The observation that particles surmount a high mountain in spite of the fact that they don't have the necessary energy cannot be explained by classical physics. However, this so called tunneling became allowed by quantum mechanics. Experimental tunneling studies with different photonic barriers from microwave frequencies up to ultraviolet frequencies pointed towards a universal tunneling time (Haibel,Esposito). Experiments and calculations have shown that the tunneling time of opaque photonic barriers (optical mirrors, e.g.) equals approximately the reciprocal frequency of the corresponding electromagnetic wave. The tunneling process is described by virtual photons. Virtual particles like photons or electrons are not observable. However, from the theoretical point of view, they represent necessary intermediate states between observable real states. In the case of tunneling there is a virtual particle between the incident and the transmitted particle. Tunneling modes have a purely imaginary wave number. They represent solutions of the Schroedinger equation and of the classical Helmholtz equation. Recent experimental and theoretical data of electron and sound tunneling confirmed the conjecture that the tunneling process is characterized by a universal tunneling time independent of the kind of field. Tunneling proceeds at a time of the order of the reciprocal frequency of the wave.Comment: 7 pages latex, 3 figure

    Zener Tunneling in Semiconducting Nanotube and Graphene Nanoribbon p-n Junctions

    Full text link
    A theory is developed for interband tunneling in semiconducting carbon nanotube and graphene nanoribbon p-n junction diodes. Characteristic length and energy scales that dictate the tunneling probabilities and currents are evaluated. By comparing the Zener tunneling processes in these structures to traditional group IV and III-V semiconductors, it is proved that for identical bandgaps, carbon based 1D structures have higher tunneling probabilities. The high tunneling current magnitudes for 1D carbon structures suggest the distinct feasibility of high-performance tunneling-based field-effect transistors.Comment: 4 Pages, 2 Figure

    Josephson super-current in graphene-superconductor junction

    Full text link
    Within the tunneling Hamiltonian formulation for the eight-component spinors,the Josephson critical super-current has been calculated in a planar superconductor-normal graphene-superconductor junction. Coupling between superconductor regions and graphene is taken into account by a tunneling Hamiltonian which contains two types of tunneling, intra-valley and inter-valley tunneling. Within the present tunneling approach, we find that the contributions of two kinds of tunneling to the critical super-current, are completely separable. Therefore, it is possible to consider the effect of the inter-valley tunnelings in the critical super-current. The incorporation of these type of processes into the tunneling Hamiltonian, exposes a special feature of the graphene Josephson junctions. The effect of inter-valley tunneling appears in the length dependence plot of critical current in the form of oscillations. We also present the results for temperature dependence of critical super-current and compare with experimental results and other theoretical calculations

    Magnetic-field-induced Luttinger liquid

    Full text link
    It is shown that a strong magnetic field applied to a bulk metal induces a Luttinger-liquid phase. This phase is characterized by the zero-bias anomaly in tunneling: the tunneling conductance scales as a power-law of voltage or temperature. The tunneling exponent increases with the magnetic field as BlnB. The zero-bias anomaly is most pronounced for tunneling with the field applied perpendicular to the plane of the tunneling junction.Comment: a reference added, minor typos correcte

    Nonmonotonic inelastic tunneling spectra due to surface spin excitations in ferromagnetic junctions

    Get PDF
    The paper addresses inelastic spin-flip tunneling accompanied by surface spin excitations (magnons) in ferromagnetic junctions. The inelastic tunneling current is proportional to the magnon density of states which is energy-independent for the surface waves and, for this reason, cannot account for the bias-voltage dependence of the observed inelastic tunneling spectra. This paper shows that the bias-voltage dependence of the tunneling spectra can arise from the tunneling matrix elements of the electron-magnon interaction. These matrix elements are derived from the Coulomb exchange interaction using the itinerant-electron model of magnon-assisted tunneling. The results for the inelastic tunneling spectra, based on the nonequilibrium Green's function calculations, are presented for both parallel and antiparallel magnetizations in the ferromagnetic leads.Comment: 9 pages, 4 figures, version as publishe
    corecore