30 research outputs found

    Tuning bandit algorithms in stochastic environments

    No full text
    International audienceAlgorithms based on upper-confidence bounds for balancing exploration and exploitation are gaining popularity since they are easy to implement, efficient and effective. In this paper we consider a variant of the basic algorithm for the stochastic, multi-armed bandit problem that takes into account the empirical variance of the different arms. In earlier experimental works, such algorithms were found to outperform the competing algorithms. The purpose of this paper is to provide a theoretical explanation of these findings and provide theoretical guidelines for the tuning of the parameters of these algorithms. For this we analyze the expected regret and for the first time the concentration of the regret. The analysis of the expected regret shows that variance estimates can be especially advantageous when the payoffs of suboptimal arms have low variance. The risk analysis, rather unexpectedly, reveals that except for some very special bandit problems, the regret, for upper confidence bounds based algorithms with standard bias sequences, concentrates only at a polynomial rate. Hence, although these algorithms achieve logarithmic expected regret rates, they seem less attractive when the risk of suffering much worse than logarithmic regret is also taken into account

    Upper-Confidence Bound for Channel Selection in LPWA Networks with Retransmissions

    Full text link
    In this paper, we propose and evaluate different learning strategies based on Multi-Arm Bandit (MAB) algorithms. They allow Internet of Things (IoT) devices to improve their access to the network and their autonomy, while taking into account the impact of encountered radio collisions. For that end, several heuristics employing Upper-Confident Bound (UCB) algorithms are examined, to explore the contextual information provided by the number of retransmissions. Our results show that approaches based on UCB obtain a significant improvement in terms of successful transmission probabilities. Furthermore, it also reveals that a pure UCB channel access is as efficient as more sophisticated learning strategies.Comment: The source code (MATLAB or Octave) used for the simula-tions and the figures is open-sourced under the MIT License, atBitbucket.org/scee\_ietr/ucb\_smart\_retran

    Automatic discovery of ranking formulas for playing with multi-armed bandits

    Full text link
    We propose an approach for discovering in an automatic way formulas for ranking arms while playing with multi-armed bandits. The approach works by de ning a grammar made of basic elements such as for example addition, subtraction, the max operator, the average values of rewards collected by an arm, their standard deviation etc., and by exploiting this grammar to generate and test a large number of formulas. The systematic search for good candidate formulas is carried out by a built-on-purpose optimization algorithm used to navigate inside this large set of candidate formulas towards those that give high performances when using them on some multi-armed bandit problems. We have applied this approach on a set of bandit problems made of Bernoulli, Gaussian and truncated Gaussian distributions and have identi ed a few simple ranking formulas that provide interesting results on every problem of this set. In particular, they clearly outperform several reference policies previously introduced in the literature. We argue that these newly found formulas as well as the procedure for generating them may suggest new directions for studying bandit problems.Peer reviewe
    corecore