23 research outputs found

    Non-Extensive Entropy for CAD Systems of Breast Cancer Images

    Full text link

    HISTOGRAM NORMALIZATION TECHNIQUE FOR PREPROCESSING OF DIGITAL MAMMOGRAPHIC IMAGES

    Get PDF
    Digital mammogram has become the most efficient tool for early breast cancer detection modalities and pre-processing these images requires high computational capabilities. Pre-processing is one of the most important step in the mammogram analysis due to poor captured mammographic image qualities. Pre-processing is basically used to correct and adjust the mammogram image for further study and classification.  Many image pre-processing techniques have been developed over the past decades to help radiologists in diagnosing breast cancer. Most studies conducted have proven that a pre-processed image is easier for radiologist to accurately detect breast cancer especially for dense breast. Different types of techniques are available for pre-processing of mammograms, which are used to improve image quality, remove noise, adjust contrast, enhance the image and preserve the edges within the image. This paper acquired 20 digital mammograms from Mammographic Image Analysis Society (MIAS) database and uses Histogram Normalization algorithm for pre-processing of the mammograms. A percentage of 95% was obtained. It was observed that the pre-processed mammographic images displayed breast abnormalities clearer with little or no noise

    Microcalcifications Detection Using Image And Signal Processing Techniques For Early Detection Of Breast Cancer

    Get PDF
    Breast cancer has transformed into a severe health problem around the world. Early diagnosis is an important factor to survive this disease. The earliest detection signs of potential breast cancer that is distinguishable by current screening techniques are the presence of microcalcifications (MCs). MCs are small crystals of calcium apatite and their normal size ranges from 0.1mm to 0.5mm single crystals to groups up to a few centimeters in diameter. They are the first indication of breast cancer in more than 40% of all breast cancer cases, making their diagnosis critical. This dissertation proposes several segmentation techniques for detecting and isolating point microcalcifications: Otsu’s Method, Balanced Histogram Thresholding, Iterative Method, Maximum Entropy, Moment Preserving, and Genetic Algorithm. These methods were applied to medical images to detect microcalcifications. In this dissertation, results from the application of these techniques are presented and their efficiency for early detection of breast cancer is explained. This dissertation also explains theories and algorithms related to these techniques that can be used for breast cancer detection

    Microcalcification segmentation from mammograms : a morphological approach

    Get PDF
    This publication presents a computer method for segmenting microcalcifications in mammograms. It makes use of morphological transformations and is composed of two parts. The first part detects microcalcifications morphologically, thus allowing the approximate area of their occurrence to be determined, the contrast to be improved, and noise to be reduced in the mammograms. In the second part, a watershed segmentation of microcalcifications is carried out. This study was carried out on a test set containing 200 ROIs 512 × 512 pixels in size, taken from mammograms from the Digital Database for Screening Mammography (DDSM), including 100 cases showing malignant lesions and 100 cases showing benign ones. The experiments carried out yielded the following average values of the measured indices: 80.5% (similarity index), 75.7% (overlap fraction), 70.8% (overlap value), and 19.8% (extra fraction). The average time of executing all steps of the methods used for a single ROI amounted to 0.83 s

    Optimized Swarm Enabled Deep Learning Technique for Bone Tumor Detection using Histopathological Image

    Get PDF
    Cancer subjugates a community that lacks proper care. It remains apparent that research studies enhance novel benchmarks in developing a computer-assisted tool for prognosis in radiology yet an indication of illness detection should be recognized by the pathologist. In bone cancer (BC), Identification of malignancy out of the BC’s histopathological image (HI) remains difficult because of the intricate structure of the bone tissue (BTe) specimen. This study proffers a new approach to diagnosing BC by feature extraction alongside classification employing deep learning frameworks. In this, the input is processed and segmented by Tsallis Entropy for noise elimination, image rescaling, and smoothening. The features are excerpted employing Efficient Net-based Convolutional Neural Network (CNN) Feature Extraction. ROI extraction will be employed to enhance the precise detection of atypical portions surrounding the affected area. Next, for classifying the accurate spotting and for grading the BTe as typical and a typical employing augmented XGBoost alongside Whale optimization (WOA). HIs gathering out of prevailing scales patients is acquired alongside texture characteristics of such images remaining employed for training and testing the Neural Network (NN). These classification outcomes exhibit that NN possesses a hit ratio of 99.48 percent while this occurs in BT classification

    PERFORMANCE OF A CAD SCHEME APPLIED TO IMAGES OBTAINED FROM MAMMOGRAPHIC FILM DIGITIZATION AND FULL-FIELD DIGITAL MAMMOGRAPHY (FFDM)

    Full text link

    Breast Cancer MRI Classification Based on Fractional Entropy Image Enhancement and Deep Feature Extraction

    Get PDF
    سرطان الثدي يعتبر واحد من الامراض القاتلة الشائعة بين النساء في جميع أنحاء العالم. والتشخيص المبكر لسرطان الثدي الكشف المبكر من أهم استراتيجيات الوقاية الثانوية. نظرًا لاستخدام التصوير الطبي على نطاق واسع في تشخيص العديد من الأمراض المزمنة ومراقبتها، فقد تم اقتراح العديد من خوارزميات معالجة الصور على مر السنين لزيادة مجال التصوير الطبي بحيث تصبح عملية التشخيص أكثر دقة وكفاءة. تقدم هذه الدراسة خوارزمية جديدة لاستخراج الخواص العميقة من نوعين من صور الرنين المغناطيسي T2W-TSE و STIR MRI كمدخلات للشبكات العصبية العميقة المقترحة والتي تُستخدم لاستخراج الخواص للتمييز بين فحوصات التصوير بالرنين المغناطيسي للثدي المرضية والصحية. في هذه الخوارزمية، تتم معالجة فحوصات التصوير بالرنين المغناطيسي للثدي مسبقًا قبل خطوة استخراج الخواص لتقليل تأثيرات الاختلافات بين شرائح التصوير بالرنين المغناطيسي، وفصل الثدي الايمن عن الايسر، بالإضافة الى عزل خلفية الصور. وقد كانت أقصى دقة تم تحقيقها لتصنيف مجموعة بيانات تضم 326 شريحة تصوير بالرنين المغناطيسي للثدي 98.77٪. يبدو أن النموذج يتسم بالكفاءة والأداء ويمكن بالتالي اعتباره مرشحًا للتطبيق في بيئة سريرية.Disease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature extraction step to enhance and preserve the fine details of the breast MRI scans boundaries by using fractional integral entropy FIE algorithm, to reduce the effects of the intensity variations between MRI slices, and finally to separate the right and left breast regions by exploiting the symmetry information. The obtained features are classified using a long short-term memory (LSTM) neural network classifier. Subsequently, all extracted features significantly improves the performance of the LSTM network to precisely discriminate between pathological and healthy cases. The maximum achieved accuracy for classifying the collected dataset comprising 326 T2W-TSE images and 326 STIR images is 98.77%. The experimental results demonstrate that FIE enhancement method improve the performance of CNN in classifying breast MRI scans. The proposed model appears to be efficient and might represent a useful diagnostic tool in the evaluation of MRI breast scans

    AN AUTOMATED COMPUTER-AIDED DETECTION (CADe) AND DIAGNOSIS (CADx) SYSTEM FOR BREAST MICROCALCIFICATIONS IN MAMMOGRAMS

    Get PDF
    ABSTRACTAn automated computer aided diagnosis system has been proposed for detection of microcalcification (MC) clusters in mammograms. The proposed system is a whole system including suspicious regions identification, MCs detection, false positive reduction and benign/malign classification. For classification of suspicious microcalcification regions, a multilayer perceptron (MLP) neural network was used with grey level co-occurrence matrix (GLCM) and statistical features.  Then to decrease the false positive classification ratio, we used cascade correlation neural network (CCNN) with grey level run length matrix (GLRLM) features. In the last step, hybrid form of discriminant analysis and support vector machine (SVM) methods were used with GLRLM features for benign/malign classification of detected MC clusters. The open access Mammographic Image Analysis Society (MIAS) database was used for the study. Experimental results show that the proposed algorithm obtained 86% sensitivity, 98.3% specificity and 1.163 FPpI rates for detection an for diagnosis of breast cancer, the obtained sensitivity and specificity values are 100% and 100% respectively. Despite the vision difficulty of MC clusters, the novel system provides very satisfactory results. Furthermore, the developed system is fully automatic whole system which gives outputs as percentages and transformed assessment categories. Keywords: Mammograms, Breast cancer, Computer aided diagnosis, Cascade correlation neural network (CCNN), Grey level co-occurrence matrix (GLCM), Grey level run length matrix (GLRLM). 
    corecore