2,741 research outputs found

    Multiagent cooperation for solving global optimization problems: an extendible framework with example cooperation strategies

    Get PDF
    This paper proposes the use of multiagent cooperation for solving global optimization problems through the introduction of a new multiagent environment, MANGO. The strength of the environment lays in itsflexible structure based on communicating software agents that attempt to solve a problem cooperatively. This structure allows the execution of a wide range of global optimization algorithms described as a set of interacting operations. At one extreme, MANGO welcomes an individual non-cooperating agent, which is basically the traditional way of solving a global optimization problem. At the other extreme, autonomous agents existing in the environment cooperate as they see fit during run time. We explain the development and communication tools provided in the environment as well as examples of agent realizations and cooperation scenarios. We also show how the multiagent structure is more effective than having a single nonlinear optimization algorithm with randomly selected initial points

    A Role-Based Approach for Orchestrating Emergent Configurations in the Internet of Things

    Full text link
    The Internet of Things (IoT) is envisioned as a global network of connected things enabling ubiquitous machine-to-machine (M2M) communication. With estimations of billions of sensors and devices to be connected in the coming years, the IoT has been advocated as having a great potential to impact the way we live, but also how we work. However, the connectivity aspect in itself only accounts for the underlying M2M infrastructure. In order to properly support engineering IoT systems and applications, it is key to orchestrate heterogeneous 'things' in a seamless, adaptive and dynamic manner, such that the system can exhibit a goal-directed behaviour and take appropriate actions. Yet, this form of interaction between things needs to take a user-centric approach and by no means elude the users' requirements. To this end, contextualisation is an important feature of the system, allowing it to infer user activities and prompt the user with relevant information and interactions even in the absence of intentional commands. In this work we propose a role-based model for emergent configurations of connected systems as a means to model, manage, and reason about IoT systems including the user's interaction with them. We put a special focus on integrating the user perspective in order to guide the emergent configurations such that systems goals are aligned with the users' intentions. We discuss related scientific and technical challenges and provide several uses cases outlining the concept of emergent configurations.Comment: In Proceedings of the Second International Workshop on the Internet of Agents @AAMAS201

    Organisational Abstractions for the Analysis and Design of Multi-Agent Systems

    No full text
    The architecture of a multi-agent system can naturally be viewed as a computational organisation. For this reason, we believe organisational abstractions should play a central role in the analysis and design of such systems. To this end, the concepts of agent roles and role models are increasingly being used to specify and design multi-agent systems. However, this is not the full picture. In this paper we introduce three additional organisational concepts - organisational rules, organisational structures, and organisational patterns - that we believe are necessary for the complete specification of computational organisations. We view the introduction of these concepts as a step towards a comprehensive methodology for agent-oriented systems

    Multi Agent Systems in Logistics: A Literature and State-of-the-art Review

    Get PDF
    Based on a literature survey, we aim to answer our main question: “How should we plan and execute logistics in supply chains that aim to meet today’s requirements, and how can we support such planning and execution using IT?†Today’s requirements in supply chains include inter-organizational collaboration and more responsive and tailored supply to meet specific demand. Enterprise systems fall short in meeting these requirements The focus of planning and execution systems should move towards an inter-enterprise and event-driven mode. Inter-organizational systems may support planning going from supporting information exchange and henceforth enable synchronized planning within the organizations towards the capability to do network planning based on available information throughout the network. We provide a framework for planning systems, constituting a rich landscape of possible configurations, where the centralized and fully decentralized approaches are two extremes. We define and discuss agent based systems and in particular multi agent systems (MAS). We emphasize the issue of the role of MAS coordination architectures, and then explain that transportation is, next to production, an important domain in which MAS can and actually are applied. However, implementation is not widespread and some implementation issues are explored. In this manner, we conclude that planning problems in transportation have characteristics that comply with the specific capabilities of agent systems. In particular, these systems are capable to deal with inter-organizational and event-driven planning settings, hence meeting today’s requirements in supply chain planning and execution.supply chain;MAS;multi agent systems

    Blockchain Solutions for Multi-Agent Robotic Systems: Related Work and Open Questions

    Full text link
    The possibilities of decentralization and immutability make blockchain probably one of the most breakthrough and promising technological innovations in recent years. This paper presents an overview, analysis, and classification of possible blockchain solutions for practical tasks facing multi-agent robotic systems. The paper discusses blockchain-based applications that demonstrate how distributed ledger can be used to extend the existing number of research platforms and libraries for multi-agent robotic systems.Comment: 5 pages, FRUCT-2019 conference pape

    Organization based multiagent architecture for distributed environments

    Get PDF
    [EN]Distributed environments represent a complex field in which applied solutions should be flexible and include significant adaptation capabilities. These environments are related to problems where multiple users and devices may interact, and where simple and local solutions could possibly generate good results, but may not be effective with regards to use and interaction. There are many techniques that can be employed to face this kind of problems, from CORBA to multi-agent systems, passing by web-services and SOA, among others. All those methodologies have their advantages and disadvantages that are properly analyzed in this documents, to finally explain the new architecture presented as a solution for distributed environment problems. The new architecture for solving complex solutions in distributed environments presented here is called OBaMADE: Organization Based Multiagent Architecture for Distributed Environments. It is a multiagent architecture based on the organizations of agents paradigm, where the agents in the architecture are structured into organizations to improve their organizational capabilities. The reasoning power of the architecture is based on the Case-Based Reasoning methology, being implemented in a internal organization that uses agents to create services to solve the external request made by the users. The OBaMADE architecture has been successfully applied to two different case studies where its prediction capabilities have been properly checked. Those case studies have showed optimistic results and, being complex systems, have demonstrated the abstraction and generalizations capabilities of the architecture. Nevertheless OBaMADE is intended to be able to solve much other kind of problems in distributed environments scenarios. It should be applied to other varieties of situations and to other knowledge fields to fully develop its potencial.[ES]Los entornos distribuidos representan un campo de conocimiento complejo en el que las soluciones a aplicar deben ser flexibles y deben contar con gran capacidad de adaptación. Este tipo de entornos está normalmente relacionado con problemas donde varios usuarios y dispositivos entran en juego. Para solucionar dichos problemas, pueden utilizarse sistemas locales que, aunque ofrezcan buenos resultados en términos de calidad de los mismos, no son tan efectivos en cuanto a la interacción y posibilidades de uso. Existen múltiples técnicas que pueden ser empleadas para resolver este tipo de problemas, desde CORBA a sistemas multiagente, pasando por servicios web y SOA, entre otros. Todas estas mitologías tienen sus ventajas e inconvenientes, que se analizan en este documento, para explicar, finalmente, la nueva arquitectura presentada como una solución para los problemas generados en entornos distribuidos. La nueva arquitectura aquí se llama OBaMADE, que es el acrónimo del inglés Organization Based Multiagent Architecture for Distributed Environments (Arquitectura Multiagente Basada en Organizaciones para Entornos Distribuidos). Se trata de una arquitectura multiagente basasa en el paradigma de las organizaciones de agente, donde los agentes que forman parte de la arquitectura se estructuran en organizaciones para mejorar sus capacidades organizativas. La capacidad de razonamiento de la arquitectura está basada en la metodología de razonamiento basado en casos, que se ha implementado en una de las organizaciones internas de la arquitectura por medio de agentes que crean servicios que responden a las solicitudes externas de los usuarios. La arquitectura OBaMADE se ha aplicado de forma exitosa a dos casos de estudio diferentes, en los que se han demostrado sus capacidades predictivas. Aplicando OBaMADE a estos casos de estudio se han obtenido resultados esperanzadores y, al ser sistemas complejos, se han demostrado las capacidades tanto de abstracción como de generalización de la arquitectura presentada. Sin embargo, esta arquitectura está diseñada para poder ser aplicada a más tipo de problemas de entornos distribuidos. Debe ser aplicada a más variadas situaciones y a otros campos de conocimiento para desarrollar completamente el potencial de esta arquitectura

    Regulated MAS: Social Perspective

    Get PDF
    This chapter addresses the problem of building normative multi-agent systems in terms of regulatory mechanisms. It describes a static conceptual model through which one can specify normative multi-agent systems along with a dynamic model to capture their operation and evolution. The chapter proposes a typology of applications and presents some open problems. In the last section, the authors express their individual views on these mattersMunindar Singh’s effort was partially supported by the U.S. Army Research Office under grant W911NF-08-1-0105. The content of this paper does not necessarily reflect the position or policy of the U.S. Government; no official endorsement should be inferred or implied. Nicoletta Fornara’s effort is supported by the Hasler Foundation project nr. 11115-KG and by the SER project nr. C08.0114 within the COST Action IC0801 Agreement Technologies. Henrique Lopes Cardoso’s effort is supported by Fundação para a Ciência e a Tecnologia (FCT), under project PTDC/EIA-EIA/104420/2008. Pablo Noriega’s effort has been partially supported by the Spanish Ministry of Science and Technology through the Agreement Technologies CONSOLIDER project under contract CSD2007-0022, and the Generalitat of Catalunya grant 2009-SGR-1434.Peer Reviewe

    Resilience, reliability, and coordination in autonomous multi-agent systems

    Get PDF
    Acknowledgements The research reported in this paper was funded and supported by various grants over the years: Robotics and AI in Nuclear (RAIN) Hub (EP/R026084/1); Future AI and Robotics for Space (FAIR-SPACE) Hub (EP/R026092/1); Offshore Robotics for Certification of Assets (ORCA) Hub (EP/R026173/1); the Royal Academy of Engineering under the Chair in Emerging Technologies scheme; Trustworthy Autonomous Systems “Verifiability Node” (EP/V026801); Scrutable Autonomous Systems (EP/J012084/1); Supporting Security Policy with Effective Digital Intervention (EP/P011829/1); The International Technology Alliance in Network and Information Sciences.Peer reviewedPostprin
    corecore