115,967 research outputs found

    Simultaneous Inference of User Representations and Trust

    Full text link
    Inferring trust relations between social media users is critical for a number of applications wherein users seek credible information. The fact that available trust relations are scarce and skewed makes trust prediction a challenging task. To the best of our knowledge, this is the first work on exploring representation learning for trust prediction. We propose an approach that uses only a small amount of binary user-user trust relations to simultaneously learn user embeddings and a model to predict trust between user pairs. We empirically demonstrate that for trust prediction, our approach outperforms classifier-based approaches which use state-of-the-art representation learning methods like DeepWalk and LINE as features. We also conduct experiments which use embeddings pre-trained with DeepWalk and LINE each as an input to our model, resulting in further performance improvement. Experiments with a dataset of ∌\sim356K user pairs show that the proposed method can obtain an high F-score of 92.65%.Comment: To appear in the proceedings of ASONAM'17. Please cite that versio

    Latent Space Model for Multi-Modal Social Data

    Full text link
    With the emergence of social networking services, researchers enjoy the increasing availability of large-scale heterogenous datasets capturing online user interactions and behaviors. Traditional analysis of techno-social systems data has focused mainly on describing either the dynamics of social interactions, or the attributes and behaviors of the users. However, overwhelming empirical evidence suggests that the two dimensions affect one another, and therefore they should be jointly modeled and analyzed in a multi-modal framework. The benefits of such an approach include the ability to build better predictive models, leveraging social network information as well as user behavioral signals. To this purpose, here we propose the Constrained Latent Space Model (CLSM), a generalized framework that combines Mixed Membership Stochastic Blockmodels (MMSB) and Latent Dirichlet Allocation (LDA) incorporating a constraint that forces the latent space to concurrently describe the multiple data modalities. We derive an efficient inference algorithm based on Variational Expectation Maximization that has a computational cost linear in the size of the network, thus making it feasible to analyze massive social datasets. We validate the proposed framework on two problems: prediction of social interactions from user attributes and behaviors, and behavior prediction exploiting network information. We perform experiments with a variety of multi-modal social systems, spanning location-based social networks (Gowalla), social media services (Instagram, Orkut), e-commerce and review sites (Amazon, Ciao), and finally citation networks (Cora). The results indicate significant improvement in prediction accuracy over state of the art methods, and demonstrate the flexibility of the proposed approach for addressing a variety of different learning problems commonly occurring with multi-modal social data.Comment: 12 pages, 7 figures, 2 table

    The Impact of Trust on Acceptance of Online Banking

    Get PDF
    Major benefits of Online Banking include for banks cost savings, and for customers convenience. Nevertheless, many people perceive Internet banking as risky. This paper introduces a tentative conceptual framework. Trust will be integrated into the Technology Acceptance Model – TAM - (Davis, 1989). Recent research showed that Trust has a striking influence on user willingness to engage in online exchanges of money and personal sensitive information. Detailed literature about Online Banking and Trust is provided. TAM is discussed in depth; external variables that are suitable for the Online Banking context is suggested. In addition the theoretical justification for the conceptual framework integration is discussed. Finally managerial implications and recommendations for Online Banking acceptance are suggested

    A Model of Consistent Node Types in Signed Directed Social Networks

    Full text link
    Signed directed social networks, in which the relationships between users can be either positive (indicating relations such as trust) or negative (indicating relations such as distrust), are increasingly common. Thus the interplay between positive and negative relationships in such networks has become an important research topic. Most recent investigations focus upon edge sign inference using structural balance theory or social status theory. Neither of these two theories, however, can explain an observed edge sign well when the two nodes connected by this edge do not share a common neighbor (e.g., common friend). In this paper we develop a novel approach to handle this situation by applying a new model for node types. Initially, we analyze the local node structure in a fully observed signed directed network, inferring underlying node types. The sign of an edge between two nodes must be consistent with their types; this explains edge signs well even when there are no common neighbors. We show, moreover, that our approach can be extended to incorporate directed triads, when they exist, just as in models based upon structural balance or social status theory. We compute Bayesian node types within empirical studies based upon partially observed Wikipedia, Slashdot, and Epinions networks in which the largest network (Epinions) has 119K nodes and 841K edges. Our approach yields better performance than state-of-the-art approaches for these three signed directed networks.Comment: To appear in the IEEE/ACM International Conference on Advances in Social Network Analysis and Mining (ASONAM), 201
    • 

    corecore