5 research outputs found

    Trust Management Model for Cloud Computing Environment

    Get PDF
    Software as a service or (SaaS) is a new software development and deployment paradigm over the cloud and offers Information Technology services dynamically as "on-demand" basis over the internet. Trust is one of the fundamental security concepts on storing and delivering such services. In general, trust factors are integrated into such existent security frameworks in order to add a security level to entities collaborations through the trust relationship. However, deploying trust factor in the secured cloud environment are more complex engineering task due to the existence of heterogeneous types of service providers and consumers. In this paper, a formal trust management model has been introduced to manage the trust and its properties for SaaS in cloud computing environment. The model is capable to represent the direct trust, recommended trust, reputation etc. formally. For the analysis of the trust properties in the cloud environment, the proposed approach estimates the trust value and uncertainty of each peer by computing decay function, number of positive interactions, reputation factor and satisfaction level for the collected information.Comment: 5 Pages, 2 Figures, Conferenc

    Establishing Trust in e-Governance using Web Services

    Get PDF
    Trust Management is one of the most challenging issues in the emerging Web Engineering and InternetTechnologies. Over the past few years, many studies have been proposed different techniques to address trustmanagement issues. However, despite these past efforts, several trust management issues such as privacy, security,accessibility, integrity and scalability have been mostly ignored and need to be proposed in Web Engineeringtechnologies. Web services provide many opportunities for enterprises to built trustworthiness. In India the growingeconomic infrastructure with lightening speeds towards the adoption and successful implementation of e-governance.Establishing trust in e-governance services is quite important as now government has many services for commonman at their door step and more services are in future. But the common man has to know about it and have usedfrequently for their daily requirements. This paper is emphasized to trust on the web services and what steps shouldbe adopted for better service

    A Blockchain-Based Trust Management Framework with Verifiable Interactions

    Full text link
    There has been tremendous interest in the development of formal trust models and metrics through the use of analytics (e.g., Belief Theory and Bayesian models), logics (e.g., Epistemic and Subjective Logic) and other mathematical models. The choice of trust metric will depend on context, circumstance and user requirements and there is no single best metric for use in all circumstances. Where different users require different trust metrics to be employed the trust score calculations should still be based on all available trust evidence. Trust is normally computed using past experiences but, in practice (especially in centralised systems), the validity and accuracy of these experiences are taken for granted. In this paper, we provide a formal framework and practical blockchain-based implementation that allows independent trust providers to implement different trust metrics in a distributed manner while still allowing all trust providers to base their calculations on a common set of trust evidence. Further, our design allows experiences to be provably linked to interactions without the need for a central authority. This leads to the notion of evidence-based trust with provable interactions. Leveraging blockchain allows the trust providers to offer their services in a competitive manner, charging fees while users are provided with payments for recording experiences. Performance details of the blockchain implementation are provided

    Performance Evaluation of three Data Access Control Schemes for Cloud Computing

    Get PDF
    Cloud services are flourishing recently, both among computer users and business enterprises. They deliver remote, on-demand, convenient services for data storage, access and processing. While embracing the benefits brought by various cloud services, the consumers are faced with data disclosure, privacy leaks and malicious attacks. Therefore, it is important to use strong access control policies to maintain the security and confidentiality of the data stored in the cloud. This thesis studies the performance of three existing security schemes proposed for cloud data access control on the basis of trust and reputation. We implement the three schemes and conduct computation complexity analysis, security analysis and performance evaluation. This thesis introduces the implementation of a number of cryptographic algorithms applied in the above data access control schemes, including Proxy Re-encryption (PRE) and Ciphertext-Policy Attribute Based Encryption (CP-ABE), reputation generation and secure data transmission over Secure Socket Layer (SSL). We summarize the evaluation results and compare the performances in the aspects of computation and communication costs, flexibility, scalability and feasibility of practical usage. Pros and cons, as well as suitable application scenarios of the three schemes are further discussed

    TRUST MANAGEMENT MODEL FOR CLOUD COMPUTING ENVIRONMENT

    No full text
    corecore