2 research outputs found

    Tracing sharing in an imperative pure calculus (Extended Version)

    Full text link
    We introduce a type and effect system, for an imperative object calculus, which infers "sharing" possibly introduced by the evaluation of an expression, represented as an equivalence relation among its free variables. This direct representation of sharing effects at the syntactic level allows us to express in a natural way, and to generalize, widely-used notions in literature, notably "uniqueness" and "borrowing". Moreover, the calculus is "pure" in the sense that reduction is defined on language terms only, since they directly encode store. The advantage of this non-standard execution model with respect to a behaviourally equivalent standard model using a global auxiliary structure is that reachability relations among references are partly encoded by scoping

    Flexible recovery of uniqueness and immutability (Extended Version)

    Full text link
    We present an imperative object calculus where types are annotated with qualifiers for aliasing and mutation control. There are two key novelties with respect to similar proposals. First, the type system is very expressive. Notably, it adopts the "recovery" approach, that is, using the type context to justify strengthening types, greatly improving its power by permitting to recover uniqueness and immutability properties even in presence of other references. This is achieved by rules which restrict the use of such other references in the portion of code which is recovered. Second, execution is modeled by a non standard operational model, where properties of qualifiers can be directly expressed on source terms, rather than as invariants on an auxiliary structure which mimics physical memory. Formally, this is achieved by the block construct, introducing local variable declarations, which, when evaluated, play the role of store
    corecore