12 research outputs found

    Enhancing Genetic Improvement of Software with Regression Test Selection

    Get PDF
    Genetic improvement uses artificial intelligence to automatically improve software with respect to non-functional properties (AI for SE). In this paper, we propose the use of existing software engineering best practice to enhance Genetic Improvement (SE for AI). We conjecture that existing Regression Test Selection (RTS) techniques (which have been proven to be efficient and effective) can and should be used as a core component of the GI search process for maximising its effectiveness. To assess our idea, we have carried out a thorough empirical study assessing the use of both dynamic and static RTS techniques with GI to improve seven real-world software programs. The results of our empirical evaluation show that incorporation of RTS within GI significantly speeds up the whole GI process, making it up to 78% faster on our benchmark set, being still able to produce valid software improvements. Our findings are significant in that they can save hours to days of computational time, and can facilitate the uptake of GI in an industrial setting, by significantly reducing the time for the developer to receive feedback from such an automated technique. Therefore, we recommend the use of RTS in future test-based automated software improvement work. Finally, we hope this successful application of SE for AI will encourage other researchers to investigate further applications in this area

    Reinforcement Learning for Mutation Operator Selection in Automated Program Repair

    Full text link
    Automated program repair techniques aim to aid software developers with the challenging task of fixing bugs. In heuristic-based program repair, a search space of program variants is created by applying mutation operations on the source code to find potential patches for bugs. Most commonly, every selection of a mutation operator during search is performed uniformly at random. The inefficiency of this critical step in the search creates many variants that do not compile or break intended functionality, wasting considerable resources as a result. In this paper, we address this issue and propose a reinforcement learning-based approach to optimise the selection of mutation operators in heuristic-based program repair. Our solution is programming language, granularity-level, and search strategy agnostic and allows for easy augmentation into existing heuristic-based repair tools. We conduct extensive experimentation on four operator selection techniques, two reward types, two credit assignment strategies, two integration methods, and three sets of mutation operators using 22,300 independent repair attempts. We evaluate our approach on 353 real-world bugs from the Defects4J benchmark. Results show that the epsilon-greedy multi-armed bandit algorithm with average credit assignment is best for mutation operator selection. Our approach exhibits a 17.3% improvement upon the baseline, by generating patches for 9 additional bugs for a total of 61 patched bugs in the Defects4J benchmark

    An Analysis of the Search Spaces for Generate and Validate Patch Generation Systems

    Get PDF
    We present the first systematic analysis of the characteristics of patch search spaces for automatic patch generation systems. We analyze the search spaces of two current state-of-the-art systems, SPR and Prophet, with 16 different search space configurations. Our results are derived from an analysis of 1104 different search spaces and 768 patch generation executions. Together these experiments consumed over 9000 hours of CPU time on Amazon EC2. The analysis shows that 1) correct patches are sparse in the search spaces (typically at most one correct patch per search space per defect), 2) incorrect patches that nevertheless pass all of the test cases in the validation test suite are typically orders of magnitude more abundant, and 3) leveraging information other than the test suite is therefore critical for enabling the system to successfully isolate correct patches. We also characterize a key tradeoff in the structure of the search spaces. Larger and richer search spaces that contain correct patches for more defects can actually cause systems to find fewer, not more, correct patches. We identify two reasons for this phenomenon: 1) increased validation times because of the presence of more candidate patches and 2) more incorrect patches that pass the test suite and block the discovery of correct patches. These fundamental properties, which are all characterized for the first time in this paper, help explain why past systems often fail to generate correct patches and help identify challenges, opportunities, and productive future directions for the field

    On reliability of patch correctness assessment

    Get PDF

    An automated approach to program repair with semantic code search

    Get PDF
    Every year software companies dedicate numerous developer hours to debugging and fixing defects. Automated program repair has the potential to greatly decrease the costs of debugging. Existing automated repair techniques, such as Genprog, TSPRepair, and AE, show great promise but are not able to repair all bugs. We propose a new automated program repair technique, SearchRepair, which is a complementary program repair technique. We take advantage of existing open source code to find potential fixes based on the assumption that there are correct implementations in open source project code for some defects. The key challenges lie in efficiently finding code semantically similar (but not identical) to defective code and then appropriately integrating that code into the buggy program. The technique we present, SearchRepair, addresses these challenges by (1) encoding a large database of human-written code fragments as SMT constraints on input-output behavior, (2) localizing a given defect to likely-buggy program fragments, (3) dynamically analyzing those buggy fragments to derive input-output pairs that describe likely buggy behavior and that can be encoded as SMT constraints, (4) using state-of-the-art constraint solvers to find fragments in the code database that satisfy those constraints, and (5) validating patches that repair the bug against program test suites. We evaluate our technique, SearchRepair, on a program repair benchmark set IntroClass, which provides 998 buggy programs written by novice students, two test suites for each program, and repair results for existing program repair technique, Genprog, TSPRepair and AE. The two test suites, of which one is written by a human and the other one is automatically generated by a computer, are used to determine if a program is buggy and to evaluate the quality of a repair. We use instructor test suite to refer the test suite that is written by a human. And we use KLEE test suite to refer the test suite that are generated by the computer. We consider a program as a potential fixable defect if it fails and passes at least one test case in a test suite. Note that extracting input-output behaviors for the semantic code search requires that at least one passed test case so some buggy programs are excluded from our evaluation. There are 778 defects in IntroClass based on the instructor test suite and 845 defects in IntroClass based on the KLEE test suite. We find that when using the instructor test suite, SearchRepair is able to successfully repair 150 of 778 defects, Gengprog is able to fix 287 defects, TSPRepair is able to fix 247 defects, AE is able to fix 159 defects. In total, these 4 techniques are able to fix 310 defects using the instructor test suite and 20 of the 310 defects can only be fixed by SearchRepair. We also find that when using the computer generated test suite, there are 58 unique defects that can only fixed by SearchRepair out of 339 total unique defects that can be fixed by the 4 techniques. These results suggest that SearchRepair is a complementary technique to existing program repair techniques

    An Analysis of the Search Spaces for Generate and Validate Patch Generation Systems

    Get PDF
    We present the first systematic analysis of the characteristics of patch search spaces for automatic patch generation systems. We analyze the search spaces of two current state-of- the-art systems, SPR and Prophet, with 16 different search space configurations. Our results are derived from an analysis of 1104 different search spaces and 768 patch generation executions. Together these experiments consumed over 9000 hours of CPU time on Amazon EC2.The analysis shows that 1) correct patches are sparse in the search spaces (typically at most one correct patch per search space per defect), 2) incorrect patches that nevertheless pass all of the test cases in the validation test suite are typically orders of magnitude more abundant, and 3) leveraging information other than the test suite is therefore critical for enabling the system to successfully isolate correct patches.We also characterize a key tradeoff in the structure of the search spaces. Larger and richer search spaces that contain correct patches for more defects can actually cause systems to find fewer, not more, correct patches. We identify two reasons for this phenomenon: 1) increased validation times because of the presence of more candidate patches and 2) more incorrect patches that pass the test suite and block the discovery of correct patches. These fundamental properties, which are all characterized for the first time in this paper, help explain why past systems often fail to generate correct patches and help identify challenges, opportunities, and productive future directions for the field
    corecore