1,523 research outputs found

    Writing Reusable Digital Geometry Algorithms in a Generic Image Processing Framework

    Full text link
    Digital Geometry software should reflect the generality of the underlying mathe- matics: mapping the latter to the former requires genericity. By designing generic solutions, one can effectively reuse digital geometry data structures and algorithms. We propose an image processing framework focused on the Generic Programming paradigm in which an algorithm on the paper can be turned into a single code, written once and usable with various input types. This approach enables users to design and implement new methods at a lower cost, try cross-domain experiments and help generalize resultsComment: Workshop on Applications of Discrete Geometry and Mathematical Morphology, Istanb : France (2010

    Hidden geometries in networks arising from cooperative self-assembly

    Get PDF
    Multilevel self-assembly involving small structured groups of nano-particles provides new routes to development of functional materials with a sophisticated architecture. Apart from the inter-particle forces, the geometrical shapes and compatibility of the building blocks are decisive factors in each phase of growth. Therefore, a comprehensive understanding of these processes is essential for the design of large assemblies of desired properties. Here, we introduce a computational model for cooperative self-assembly with simultaneous attachment of structured groups of particles, which can be described by simplexes (connected pairs, triangles, tetrahedrons and higher order cliques) to a growing network, starting from a small seed. The model incorporates geometric rules that provide suitable nesting spaces for the new group and the chemical affinity ν\nu of the system to accepting an excess number of particles. For varying chemical affinity, we grow different classes of assemblies by binding the cliques of distributed sizes. Furthermore, to characterise the emergent large-scale structures, we use the metrics of graph theory and algebraic topology of graphs, and 4-point test for the intrinsic hyperbolicity of the networks. Our results show that higher Q-connectedness of the appearing simplicial complexes can arise due to only geometrical factors, i.e., for ν=0\nu = 0, and that it can be effectively modulated by changing the chemical potential and the polydispersity of the size of binding simplexes. For certain parameters in the model we obtain networks of mono-dispersed clicks, triangles and tetrahedrons, which represent the geometrical descriptors that are relevant in quantum physics and frequently occurring chemical clusters.Comment: 9 pages, 8 figure

    Ramanujan Complexes and bounded degree topological expanders

    Full text link
    Expander graphs have been a focus of attention in computer science in the last four decades. In recent years a high dimensional theory of expanders is emerging. There are several possible generalizations of the theory of expansion to simplicial complexes, among them stand out coboundary expansion and topological expanders. It is known that for every d there are unbounded degree simplicial complexes of dimension d with these properties. However, a major open problem, formulated by Gromov, is whether bounded degree high dimensional expanders, according to these definitions, exist for d >= 2. We present an explicit construction of bounded degree complexes of dimension d = 2 which are high dimensional expanders. More precisely, our main result says that the 2-skeletons of the 3-dimensional Ramanujan complexes are topological expanders. Assuming a conjecture of Serre on the congruence subgroup property, infinitely many of them are also coboundary expanders.Comment: To appear in FOCS 201
    • …
    corecore