117,933 research outputs found

    Spotting Trees with Few Leaves

    Full text link
    We show two results related to the Hamiltonicity and kk-Path algorithms in undirected graphs by Bj\"orklund [FOCS'10], and Bj\"orklund et al., [arXiv'10]. First, we demonstrate that the technique used can be generalized to finding some kk-vertex tree with ll leaves in an nn-vertex undirected graph in O(1.657k2l/2)O^*(1.657^k2^{l/2}) time. It can be applied as a subroutine to solve the kk-Internal Spanning Tree (kk-IST) problem in O(min(3.455k,1.946n))O^*(\min(3.455^k, 1.946^n)) time using polynomial space, improving upon previous algorithms for this problem. In particular, for the first time we break the natural barrier of O(2n)O^*(2^n). Second, we show that the iterated random bipartition employed by the algorithm can be improved whenever the host graph admits a vertex coloring with few colors; it can be an ordinary proper vertex coloring, a fractional vertex coloring, or a vector coloring. In effect, we show improved bounds for kk-Path and Hamiltonicity in any graph of maximum degree Δ=4,,12\Delta=4,\ldots,12 or with vector chromatic number at most 8

    Generation of Neuronal Trees by a New Three Letters Encoding

    Get PDF
    A neuronal tree is a rooted tree with n leaves whose each internal node has at least two children; this class not only is defined based on the structure of dendrites in neurons, but also refers to phylogenetic trees or evolutionary trees. More precisely, neuronal trees are rooted-multistate phylogenetic trees whose size is defined as the number of leaves. In this paper, a new encoding over an alphabet of size 3 (minimal cardinality) is introduced for representing the neuronal trees with a given number of leaves. This encoding is used for generating neuronal trees with n leaves in A-order with constant average time and O(n) time complexity in the worst case. Also, new ranking and unranking algorithms are presented in time complexity of O(n) and O(n log n), respectively
    corecore