609 research outputs found

    Recoloring bounded treewidth graphs

    Full text link
    Let kk be an integer. Two vertex kk-colorings of a graph are \emph{adjacent} if they differ on exactly one vertex. A graph is \emph{kk-mixing} if any proper kk-coloring can be transformed into any other through a sequence of adjacent proper kk-colorings. Any graph is (tw+2)(tw+2)-mixing, where twtw is the treewidth of the graph (Cereceda 2006). We prove that the shortest sequence between any two (tw+2)(tw+2)-colorings is at most quadratic, a problem left open in Bonamy et al. (2012). Jerrum proved that any graph is kk-mixing if kk is at least the maximum degree plus two. We improve Jerrum's bound using the grundy number, which is the worst number of colors in a greedy coloring.Comment: 11 pages, 5 figure

    Recoloring graphs via tree decompositions

    Full text link
    Let kk be an integer. Two vertex kk-colorings of a graph are \emph{adjacent} if they differ on exactly one vertex. A graph is \emph{kk-mixing} if any proper kk-coloring can be transformed into any other through a sequence of adjacent proper kk-colorings. Jerrum proved that any graph is kk-mixing if kk is at least the maximum degree plus two. We first improve Jerrum's bound using the grundy number, which is the worst number of colors in a greedy coloring. Any graph is (tw+2)(tw+2)-mixing, where twtw is the treewidth of the graph (Cereceda 2006). We prove that the shortest sequence between any two (tw+2)(tw+2)-colorings is at most quadratic (which is optimal up to a constant factor), a problem left open in Bonamy et al. (2012). We also prove that given any two (χ(G)+1)(\chi(G)+1)-colorings of a cograph (resp. distance-hereditary graph) GG, we can find a linear (resp. quadratic) sequence between them. In both cases, the bounds cannot be improved by more than a constant factor for a fixed χ(G)\chi(G). The graph classes are also optimal in some sense: one of the smallest interesting superclass of distance-hereditary graphs corresponds to comparability graphs, for which no such property holds (even when relaxing the constraint on the length of the sequence). As for cographs, they are equivalently the graphs with no induced P4P_4, and there exist P5P_5-free graphs that admit no sequence between two of their (χ(G)+1)(\chi(G)+1)-colorings. All the proofs are constructivist and lead to polynomial-time recoloring algorithmComment: 20 pages, 8 figures, partial results already presented in http://arxiv.org/abs/1302.348

    Line-distortion, Bandwidth and Path-length of a graph

    Full text link
    We investigate the minimum line-distortion and the minimum bandwidth problems on unweighted graphs and their relations with the minimum length of a Robertson-Seymour's path-decomposition. The length of a path-decomposition of a graph is the largest diameter of a bag in the decomposition. The path-length of a graph is the minimum length over all its path-decompositions. In particular, we show: - if a graph GG can be embedded into the line with distortion kk, then GG admits a Robertson-Seymour's path-decomposition with bags of diameter at most kk in GG; - for every class of graphs with path-length bounded by a constant, there exist an efficient constant-factor approximation algorithm for the minimum line-distortion problem and an efficient constant-factor approximation algorithm for the minimum bandwidth problem; - there is an efficient 2-approximation algorithm for computing the path-length of an arbitrary graph; - AT-free graphs and some intersection families of graphs have path-length at most 2; - for AT-free graphs, there exist a linear time 8-approximation algorithm for the minimum line-distortion problem and a linear time 4-approximation algorithm for the minimum bandwidth problem
    • …
    corecore