443 research outputs found

    Well-Known brands recognition by automated classifiers using local and global features

    Get PDF
    From color and type to patterns and illustrations, brands sense to be recognizable and convey their values and personality. Here patterns and color are key elements, as they can play a vital role in brand recognition. The images used for brand classification were handpicked and collectively named as HKDataset. We have explored various feature extractors used for classification and used automated classifiers named Linear SVM to achieve higher accuracy while tuning the model parameters to achieve optimal performance. It has been observed that Support Vector Machines performs better when using GIST descriptors combined with Bag of SIFT features. We hope to apply deep learning and other sophisticated classifiers to much-expanded categories of brands in the future

    Large Scale Pattern Detection in Videos and Images from the Wild

    Get PDF
    PhDPattern detection is a well-studied area of computer vision, but still current methods are unstable in images of poor quality. This thesis describes improvements over contemporary methods in the fast detection of unseen patterns in a large corpus of videos that vary tremendously in colour and texture definition, captured “in the wild” by mobile devices and surveillance cameras. We focus on three key areas of this broad subject; First, we identify consistency weaknesses in existing techniques of processing an image and it’s horizontally reflected (mirror) image. This is important in police investigations where subjects change their appearance to try to avoid recognition, and we propose that invariance to horizontal reflection should be more widely considered in image description and recognition tasks too. We observe online Deep Learning system behaviours in this respect, and provide a comprehensive assessment of 10 popular low level feature detectors. Second, we develop simple and fast algorithms that combine to provide memory- and processing-efficient feature matching. These involve static scene elimination in the presence of noise and on-screen time indicators, a blur-sensitive feature detection that finds a greater number of corresponding features in images of varying sharpness, and a combinatorial texture and colour feature matching algorithm that matches features when either attribute may be poorly defined. A comprehensive evaluation is given, showing some improvements over existing feature correspondence methods. Finally, we study random decision forests for pattern detection. A new method of indexing patterns in video sequences is devised and evaluated. We automatically label positive and negative image training data, reducing a task of unsupervised learning to one of supervised learning, and devise a node split function that is invariant to mirror reflection and rotation through 90 degree angles. A high dimensional vote accumulator encodes the hypothesis support, yielding implicit back-projection for pattern detection.European Union’s Seventh Framework Programme, specific topic “framework and tools for (semi-) automated exploitation of massive amounts of digital data for forensic purposes”, under grant agreement number 607480 (LASIE IP project)

    A perception pipeline exploiting trademark databases for service robots

    Get PDF

    Registration and categorization of camera captured documents

    Get PDF
    Camera captured document image analysis concerns with processing of documents captured with hand-held sensors, smart phones, or other capturing devices using advanced image processing, computer vision, pattern recognition, and machine learning techniques. As there is no constrained capturing in the real world, the captured documents suffer from illumination variation, viewpoint variation, highly variable scale/resolution, background clutter, occlusion, and non-rigid deformations e.g., folds and crumples. Document registration is a problem where the image of a template document whose layout is known is registered with a test document image. Literature in camera captured document mosaicing addressed the registration of captured documents with the assumption of considerable amount of single chunk overlapping content. These methods cannot be directly applied to registration of forms, bills, and other commercial documents where the fixed content is distributed into tiny portions across the document. On the other hand, most of the existing document image registration methods work with scanned documents under affine transformation. Literature in document image retrieval addressed categorization of documents based on text, figures, etc. However, the scalability of existing document categorization methodologies based on logo identification is very limited. This dissertation focuses on two problems (i) registration of captured documents where the overlapping content is distributed into tiny portions across the documents and (ii) categorization of captured documents into predefined logo classes that scale to large datasets using local invariant features. A novel methodology is proposed for the registration of user defined Regions Of Interest (ROI) using corresponding local features from their neighborhood. The methodology enhances prior approaches in point pattern based registration, like RANdom SAmple Consensus (RANSAC) and Thin Plate Spline-Robust Point Matching (TPS-RPM), to enable registration of cell phone and camera captured documents under non-rigid transformations. Three novel aspects are embedded into the methodology: (i) histogram based uniformly transformed correspondence estimation, (ii) clustering of points located near the ROI to select only close by regions for matching, and (iii) validation of the registration in RANSAC and TPS-RPM algorithms. Experimental results on a dataset of 480 images captured using iPhone 3GS and Logitech webcam Pro 9000 have shown an average registration accuracy of 92.75% using Scale Invariant Feature Transform (SIFT). Robust local features for logo identification are determined empirically by comparisons among SIFT, Speeded-Up Robust Features (SURF), Hessian-Affine, Harris-Affine, and Maximally Stable Extremal Regions (MSER). Two different matching methods are presented for categorization: matching all features extracted from the query document as a single set and a segment-wise matching of query document features using segmentation achieved by grouping area under intersecting dense local affine covariant regions. The later approach not only gives an approximate location of predicted logo classes in the query document but also helps to increase the prediction accuracies. In order to facilitate scalability to large data sets, inverted indexing of logo class features has been incorporated in both approaches. Experimental results on a dataset of real camera captured documents have shown a peak 13.25% increase in the F–measure accuracy using the later approach as compared to the former
    • …
    corecore