720 research outputs found

    High-Performance Broadcast and Multicast Protocols for Multi-Radio Multi-Channel Wireless Mesh Networks

    Get PDF
    Recently, wireless mesh networks (WMNs) have attracted much attention. A vast amount of unicast, multicast and broadcast protocols has been developed for WMNs or mobile ad hoc networks (MANETs). First of all, broadcast and multicast in wireless networks are fundamentally different from the way in which wired networks function due to the well-known wireless broadcast/multicast advantage. Moreover, most broadcast and multicast protocols in wireless networks assume a single-radio single-channel and single-rate network model, or a generalized physical model, which does not take into account the impact of interference. This dissertation focuses on high-performance broadcast and multicast protocols designed for multi-radio multi-channel (MRMC) WMNs. MRMC increases the capacity of the network from different aspects. Multi-radio allows mesh nodes to simultaneously send and receive through different radios to its neighbors. Multi-channel allows channels to be reused across the network, which expands the available spectrum and reduces the interference. Unlike MANETs, WMNs are assumed to be static or with minimal mobility. Therefore, the main design goal in WMNs is to achieve high throughput rather than to maintain connectivity. The capacity of WMNs is constrained by the interference caused by the neighbor nodes. One direct design objective is to minimize or reduce the interference in broadcast and multicast. This dissertation presents a set of broadcast and multicast protocols and mathematical formulations to achieve the design goal in MRMC WMNs. First, the broadcast problem is addressed with full consideration of both inter-node and intra-node interference to achieve efficient broadcast. The interference-aware broadcast protocol simultaneously achieves full reliability, minimum broadcast or multicast latency, minimum redundant transmissions, and high throughput. With an MRMC WMN model, new link and channel quality metrics are defined and are suitable for the design of broadcast and multicast protocols. Second, the minimum cost broadcast problem (MCBP), or minimum number of transmissions problem, is studied for MRMC WMNs. Minimum cost broadcast potentially allows more effective and efficient schedule algorithms to be designed. The proposed protocol with joint consideration of channel assignment reduces the interference to improve the throughput in the MCBP. Minimum cost broadcast in MRMC WMNs is very different from that in the single radio single channel scenario. The channel assignment in MRMC WMNs is used to assign multiple radios of every node to different channels. It determines the actual network connectivity since adjacent nodes have to be assigned to a common channel. Transmission on different channels makes different groups of neighboring nodes, and leads to different interference. Moreover, the selection of channels by the forward nodes impacts on the number of radios needed for broadcasting. Finally, the interference optimization multicast problem in WMNs with directional antennas is discussed. Directional transmissions can greatly reduce radio interference and increase spatial reuse. The interference with directional transmissions is defined for multicast algorithm design. Multicast routing found by the interference-aware algorithm tends to have fewer channel collisions. The research work presented in this dissertation concludes that (1) new and practical link and channel metrics are required for designing broadcast and multicast in MRMC WMNs; (2) a small number of radios is sufficient to significantly improve throughput of broadcast and multicast in WMNs; (3) the number of channels has more impact on almost all performance metrics, such as the throughput, the number of transmission, and interference, in WMNs

    Energy Efficient Multicast Routing in Mobile Ad Hoc Networks: Contemporary Affirmation of Benchmarking Models in Recent Literature

    Get PDF
    The Mobile Ad hoc Networks playing critical role in network aided communication requirements The features such as ad hoc and open architecture based connectivity and node mobility are elevating the mobile ad hoc networks as much as feasible to deploy and use The direct communication between any of two nodes in this network is possible if target node is in the range of source node If not the indirect communication took place which is usually referred as multi hop routing The multi hop routing occurs as either a unicast model one source node to one destination node multicast model one source node to multiple destination nodes or multiple casting manifold unicast routing In these routing strategies provision of service quality in multi hop routing is a challenging task The optimal quality of service in routing magnifies the delivery ratio transmission rate network life span and other expected characteristics of the ad hoc routing Among the quality service provision factors minimal energy conservation is prime factor which is since the nodes involved in routing are self-energized and if discharged early then the route will be destructed that causes discontinued routing The energy consumption is more specific in multicast routing hence it is grabbing the more attention of the current research contribution

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Mobile Ad hoc Networking: Imperatives and Challenges

    Get PDF
    Mobile ad hoc networks (MANETs) represent complex distributed systems that comprise wireless mobile nodes that can freely and dynamically self-organize into arbitrary and temporary, "ad-hoc" network topologies, allowing people and devices to seamlessly internetwork in areas with no pre-existing communication infrastructure, e.g., disaster recovery environments. Ad hoc networking concept is not a new one, having been around in various forms for over 20 years. Traditionally, tactical networks have been the only communication networking application that followed the ad hoc paradigm. Recently, the introduction of new technologies such as the Bluetooth, IEEE 802.11 and Hyperlan are helping enable eventual commercial MANET deployments outside the military domain. These recent evolutions have been generating a renewed and growing interest in the research and development of MANET. This paper attempts to provide a comprehensive overview of this dynamic field. It first explains the important role that mobile ad hoc networks play in the evolution of future wireless technologies. Then, it reviews the latest research activities in these areas, including a summary of MANET\u27s characteristics, capabilities, applications, and design constraints. The paper concludes by presenting a set of challenges and problems requiring further research in the future

    ECARDM: Energy Consumption Aware Route Discovery for Multicasting in Mobile Ad hoc Networks

    Get PDF
    Consideration of energy consumption in the case of wireless ad hoc networks leads to effective reduction of energy consumption by the nodes and increases the lifetime of the batteries for nodes. It is imperative from the existing models that there is significant scope for improvement in the energy-consumption based route discovery models. A model of Fuzzy based marginal energy disbursed multicast route discovery model for MANETs can support in reducing the power consumption has been proposed in our earlier research paper. In the present paper, a contemporary solution termed 201C;Energy Consumption Aware Route Discovery for Multicasting for MANETs201D; has been proposed, which is profoundly a fuzzy reasoning and genetic algorithm based model that focus on both the energy consumption and also the element of end-to-end delay whilst discovering the route. The experimental study of the model in comparison to BWDCMR and GAEEQMR models depicted that the proposed algorithm is very effective and can certainly be result oriented

    An energy-aware and QOS assured wireless multi-hop transmission protocol

    Get PDF
    A thesis submitted in fulfillment of the requirements for the degree of Master of Science by researchThe Ad-hoc network is set up with multiple wireless devices without any pre-existing infrastructure. It usually supports best-effort traffic and occasionally some kinds of Quality of Service (QoS). However, there are some applications with real-time traffic requirements where deadlines must be met. To meet deadlines, the communication network has to support the timely delivery of inter-task messages. Furthermore, energy efficiency is a critical issue for battery-powered mobile devices in ad-hoc networks. Thus, A QoS guaranteed and energy-aware transmission scheme is one hot of research topics in the research area. The MSc research work is based on the idea of Real-Time Wireless Multi-hop Protocol (RT-WMP). RT-WMP is a well known protocol originally used in the robots control area. It allows wireless real-time traffic in relatively small mobile ad-hoc networks using the low-cost commercial IEEE 802.11 technology. The proposed scheme is based on a token-passing approach and message exchange is priority based. The idea of energy-aware routing mechanism is based on the AODV protocol. This energy-saving mechanism is analysed and simulated in our study as an extension of the RT-WMP. From the simulation results and analysis, it has been shown that adding energy-aware mechanism to RT-WMP is meaningful to optimise the performance of traffic on the network

    Optimizing performance and energy efficiency of group communication and internet of things in cognitive radio networks

    Get PDF
    Data traffic in the wireless networks has grown at an unprecedented rate. While traditional wireless networks follow fixed spectrum assignment, spectrum scarcity problem becomes a major challenge in the next generations of wireless networks. Cognitive radio is a promising candidate technology that can mitigate this critical challenge by allowing dynamic spectrum access and increasing the spectrum utilization. As users and data traffic demands increases, more efficient communication methods to support communication in general, and group communication in particular, are needed. On the other hand, limited battery for the wireless network device in general makes it a bottleneck for enhancing the performance of wireless networks. In this thesis, the problem of optimizing the performance of group communication in CRNs is studied. Moreover, energy efficient and wireless-powered group communication in CRNs are considered. Additionally, a cognitive mobile base station and a cognitive UAV are proposed for the purpose of optimizing energy transfer and data dissemination, respectively. First, a multi-objective optimization for many-to-many communication in CRNs is considered. Given a many-to-many communication request, the goal is to support message routing from each user in the many-to-many group to each other. The objectives are minimizing the delay and the number of used links and maximizing data rate. The network is modeled using a multi-layer hyper graph, and the secondary users\u27 transmission is scheduled after establishing the conflict graph. Due to the difficulty of solving the problem optimally, a modified version of an Ant Colony meta-heuristic algorithm is employed to solve the problem. Additionally, energy efficient multicast communication in CRNs is introduced while considering directional and omnidirectional antennas. The multicast service is supported such that the total energy consumption of data transmission and channel switching is minimized. The optimization problem is formulated as a Mixed Integer Linear Program (MILP), and a heuristic algorithm is proposed to solve the problem in polynomial time. Second, wireless-powered machine-to-machine multicast communication in cellular networks is studied. To incentivize Internet of Things (IoT) devices to participate in forwarding the multicast messages, each IoT device participates in messages forwarding receives Radio Frequency (RF) energy form Energy Transmitters (ET) not less than the amount of energy used for messages forwarding. The objective is to minimize total transferred energy by the ETs. The problem is formulated mathematically as a Mixed Integer Nonlinear Program (MINLP), and a Generalized Bender Decomposition with Successive Convex Programming (GBD-SCP) algorithm is introduced to get an approximate solution since there is no efficient way in general to solve the problem optimally. Moreover, another algorithm, Constraints Decomposition with SCP and Binary Variable Relaxation (CDR), is proposed to get an approximate solution in a more efficient way. On the other hand, a cognitive mobile station base is proposed to transfer data and energy to a group of IoT devices underlying a primary network. Total energy consumed by the cognitive base station in its mobility, data transmission and energy transfer is minimized. Moreover, the cognitive base station adjusts its location and transmission power and transmission schedule such that data and energy demands are supported within a certain tolerable time and the primary users are protected from harmful interference. Finally, we consider a cognitive Unmanned Aerial Vehicle (UAV) to disseminate data to IoT devices. The UAV senses the spectrum and finds an idle channel, then it predicts when the corresponding primary user of the selected channel becomes active based on the elapsed time of the off period. Accordingly, it starts its transmission at the beginning of the next frame right after finding the channel is idle. Moreover, it decides the number of the consecutive transmission slots that it will use such that the number of interfering slots to the corresponding primary user does not exceed a certain threshold. A mathematical problem is formulated to maximize the minimum number of bits received by the IoT devices. A successive convex programming-based algorithm is used to get a solution for the problem in an efficiency way. It is shown that the used algorithm converges to a Kuhn Tucker point
    • …
    corecore