18,062 research outputs found

    Gossip-Based Indexing Ring Topology for 2-Dimension Spatial Data in Overlay Networks

    Get PDF
    AbstractOverlay networks are used widely in the Internet, such as retrieval and share of files, multimedia games and so on. However, in distributed system, the retrieval and share of 2-dimension spatial data still have some difficult problems and can not solve the complex retrieval of 2-dimension spatial data efficiently. This article presents a new indexing overlay networks, named 2D-Ring, which is the ring topology based on gossip for 2-dimension spatial data. The peers in our overlay networks exchange the information periodically and update each local view by constructing algorithm. 2-dimension spatial data is divided by quad-tree and mapped into control points, which are hashed into 2D-Ring by SHA-1 hash function. In such way, the problem of 2-dimension spatial data indexing is converted to the problem of searching peers in the 2D-Ring. A large of extensive experiments show that the time complexity of constructing algorithm of 2D-Ring can reach convergence logarithmically as a function of the network size and hold higher hit rate and lower query delay

    A 2D based Partition Strategy for Solving Ranking under Team Context (RTP)

    Full text link
    In this paper, we propose a 2D based partition method for solving the problem of Ranking under Team Context(RTC) on datasets without a priori. We first map the data into 2D space using its minimum and maximum value among all dimensions. Then we construct window queries with consideration of current team context. Besides, during the query mapping procedure, we can pre-prune some tuples which are not top ranked ones. This pre-classified step will defer processing those tuples and can save cost while providing solutions for the problem. Experiments show that our algorithm performs well especially on large datasets with correctness

    Location-based indexing for mobile context-aware access to a digital library

    Get PDF
    Mobile information systems need to collaborate with each other to provide seamless information access to the user. Information about the user and their context provides the points of contact between the systems. Location is the most basic user context. TIP is a mobile tourist information system that provides location-based access to documents in the digital library Greenstone. This paper identifies the challenges for providing effcient access to location-based information using the various access modes a tourist requires on their travels. We discuss our extended 2DR-tree approach to meet these challenges

    QUASII: QUery-Aware Spatial Incremental Index.

    Get PDF
    With large-scale simulations of increasingly detailed models and improvement of data acquisition technologies, massive amounts of data are easily and quickly created and collected. Traditional systems require indexes to be built before analytic queries can be executed efficiently. Such an indexing step requires substantial computing resources and introduces a considerable and growing data-to-insight gap where scientists need to wait before they can perform any analysis. Moreover, scientists often only use a small fraction of the data - the parts containing interesting phenomena - and indexing it fully does not always pay off. In this paper we develop a novel incremental index for the exploration of spatial data. Our approach, QUASII, builds a data-oriented index as a side-effect of query execution. QUASII distributes the cost of indexing across all queries, while building the index structure only for the subset of data queried. It reduces data-to-insight time and curbs the cost of incremental indexing by gradually and partially sorting the data, while producing a data-oriented hierarchical structure at the same time. As our experiments show, QUASII reduces the data-to-insight time by up to a factor of 11.4x, while its performance converges to that of the state-of-the-art static indexes

    Content Based Image Retrieval System Using NOHIS-tree

    Full text link
    Content-based image retrieval (CBIR) has been one of the most important research areas in computer vision. It is a widely used method for searching images in huge databases. In this paper we present a CBIR system called NOHIS-Search. The system is based on the indexing technique NOHIS-tree. The two phases of the system are described and the performance of the system is illustrated with the image database ImagEval. NOHIS-Search system was compared to other two CBIR systems; the first that using PDDP indexing algorithm and the second system is that using the sequential search. Results show that NOHIS-Search system outperforms the two other systems.Comment: 6 pages, 10th International Conference on Advances in Mobile Computing & Multimedia (MoMM2012

    Towards a Scalable Dynamic Spatial Database System

    Get PDF
    With the rise of GPS-enabled smartphones and other similar mobile devices, massive amounts of location data are available. However, no scalable solutions for soft real-time spatial queries on large sets of moving objects have yet emerged. In this paper we explore and measure the limits of actual algorithms and implementations regarding different application scenarios. And finally we propose a novel distributed architecture to solve the scalability issues.Comment: (2012
    • 

    corecore